CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(1)

Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors

Devagi Kanakaraju A, Cherie A. Motti B, Beverley D. Glass A and Michael Oelgemöller A C

A School of Pharmacy and Molecular Sciences, James Cook University Townsville, Qld 4811, Australia.
B Australian Institute of Marine Science (AIMS), Biomolecular Analysis Facility Townsville, Qld 4810, Australia.
C Corresponding author. Email: michael.oelgemoeller@jcu.edu.au

Environmental Chemistry 11(1) 51-62 http://dx.doi.org/10.1071/EN13098
Submitted: 20 May 2013  Accepted: 17 November 2013   Published: 19 February 2014


 
PDF (1.1 MB) $25
 Export Citation
 Print
  

Environmental context. Diclofenac, a common non-steroidal anti-inflammatory drug, is not completely removed from surface and drinking water by conventional treatment methods. Consequently, this drug is present in the aquatic environment and has been subsequently linked to toxic effects on organisms. We show that photolysis and TiO2-catalysed degradation in circulating batch reactors efficiently results in diclofenac removal under a variety of conditions. These photochemical methods thus may lead to more effective water treatment processes.

Abstract. The occurrence of diclofenac (DCF) as an emerging pollutant in surface waters and drinking water has been attributed to elevated global consumption and the inability of sewage treatment plants to remove DCF. In this study, DCF spiked drinking water and river water was subjected to photolysis and TiO2 photocatalytic treatments in a circulating laboratory-scale (immersion-well) and a demonstration-scale loop reactor (Laboclean). The operational parameters for the immersion-well reactor were optimised as follows: TiO2 P25 loading, 0.1 g L–1; natural pH, 6.2; initial concentration, 30 mg L–1; water type, distilled water. Complete DCF removal was realised within 15 min under the optimised conditions using the immersion-well reactor. Sunlight-mediated photochemical degradation required a prolonged exposure period of up to 360 min for complete DCF removal. DCF in distilled and drinking water was efficiently degraded in the larger Laboclean reactor. Differences were, however, observed based on their pseudo-first-order rate constants, which implies that the water matrix has an effect on the degradation rate. Six major photoproducts, 2-(8-chloro-9H-carbazol-1-yl)acetic acid, 2-(8-hydroxy-9H-carbazol-1-yl)acetic acid, 2,6-dichloro-N-o-tolylbenzenamine, 2-(phenylamino)benzaldehyde, 1-chloromethyl-9H-carbazole and 1-methyl-9H-carbazole, generated from TiO2 photocatalysis of DCF were identified by liquid chromatography–mass spectrometry (LCMS) and Fourier transform–ion cyclotron resonance–mass spectrometry (FT-ICR-MS). This work has shown that photocatalytic degradation kinetics of DCF are dependent on both the geometry of the photoreactor and the nature of the water matrices.

Additional keywords: advanced oxidation processes, pharmaceuticals, photocatalysis, titanium dioxide.


References

[1]  K. Kümmerer, The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. J. Environ. Manage. 2009, 90, 2354.
CrossRef | PubMed |

[2]  I. Sirés, E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ. Int. 2012, 40, 212.
CrossRef | PubMed |

[3]  B. Halling-Sørensen, S. N. Nielsen, P. F. Lanzky, F. Ingerslev, H. C. H. Lützhøft, S. E. Jørgensen, Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 1998, 36, 357.
CrossRef | PubMed |

[4]  P. Verlicchi, M. Al Aukidy, E. Zambello, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment – a review. Sci. Total Environ. 2012, 429, 123.
CrossRef | CAS | PubMed |

[5]  S. Mompelat, B. Le Bot, O. Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009, 35, 803.
CrossRef | CAS | PubMed |

[6]  A. M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey, Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 2011, 8, 649.
CrossRef | CAS |

[7]  A. Y. C. Tong, R. Braund, D. S. Warren, B. M. Peake, TiO2-assisted photodegradation of pharmaceuticals – a review. Cent. Eur. J. Chem. 2012, 10, 989.
CrossRef | CAS |

[8]  O. K. Dalrymple, D. H. Yeh, M. A. Trotz, Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J. Chem. Technol. Biotechnol. 2007, 82, 121.
CrossRef | CAS |

[9]  M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402.
CrossRef | CAS | PubMed |

[10]  K. Ikehata, N. J. Naghashkar, M. G. Ei-Din, Degradation of pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng. 2006, 28, 353.
CrossRef | CAS |

[11]  D. Dimitrakopoulou, I. Rethemiotaki, Z. Frontistis, N. P. Xekoukoulotakis, D. Venieri, D. Mantzavinos, Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J. Environ. Manage. 2012, 98, 168.
CrossRef | CAS | PubMed |

[12]  V. Romero, N. De la Cruz, R. F. Dantas, P. M. J. Giménez, S. Esplugas, Photocatalytic treatment of metoprolol and propranolol. Catal. Today 2011, 161, 115.
CrossRef | CAS |

[13]  F. Méndez-Arriaga, S. Esplugas, J. Gimenéz, Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res. 2008, 42, 585.
CrossRef | PubMed |

[14]  T. E. Doll, F. H. Frimmel, Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catal. Today 2005, 101, 195.
CrossRef | CAS |

[15]  A. Ziylan, N. H. Ince, The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. J. Hazard. Mater. 2011, 187, 24.
CrossRef | CAS | PubMed |

[16]  R. Rodil, J. B. Quintana, E. Concha-Grana, P. Lopez-Mahia, S. Muniategui-Lorenzo, D. Prada-Rodriguez, Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 2012, 86, 1040.
CrossRef | CAS | PubMed |

[17]  H. R. Buser, T. Poiger, M. D. Müller, Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ. Sci. Technol. 1998, 32, 3449.
CrossRef | CAS |

[18]  T. Heberer, A. Mechlinski, B. Fanck, A. Knappe, G. Massmann, A. Pekdeger, B. Fritz, Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monit. Remediat. 2004, 24, 70.
CrossRef | CAS |

[19]  N. Paxéus, Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Sci. Technol. 2004, 50, 253.
| PubMed |

[20]  B. Hoeger, B. Köllner, D. R. Dietrich, B. Hitzfeld, Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquat. Toxicol. 2005, 75, 53.
CrossRef | CAS | PubMed |

[21]  J. L. Oaks, M. Gilbert, M. Z. Virani, R. T. Watson, C. U. Meteyer, B. A. Rideout, H. L. Shivaprasad, S. Ahmed, M. J. I. Chaudhry, M. Arshad, S. Mahmood, A. Ali, A. A. Khan, Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630.
CrossRef | CAS | PubMed |

[22]  K. Fent, A. A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122.
CrossRef | CAS | PubMed |

[23]  Y. J. Zhang, S. U. Geißen, C. Gal, Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151.
CrossRef | CAS |

[24]  T. A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245.
CrossRef | CAS |

[25]  R. Salgado, R. Marques, J. P. Noronha, G. Carvalho, A. Oehmen, M. A. M. Reis, Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant. Environ. Sci. Pollut. Res. 2012, 19, 1818.
CrossRef | CAS |

[26]  C. Baeza, D. R. U. Knappe, Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes. Water Res. 2011, 45, 4531.
CrossRef | CAS | PubMed |

[27]  P. Bartels, W. von Tümpling, Solar radiation influence on the decomposition process of diclofenac in surface waters. Sci. Total Environ. 2007, 374, 143.
CrossRef | CAS | PubMed |

[28]  D. Vogna, R. Marotta, A. Napolitano, R. Andreozzi, M. d'Ischia, Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res. 2004, 38, 414.
CrossRef | CAS | PubMed |

[29]  J. L. Packer, J. J. Werner, D. E. Latch, K. McNeill, W. A. Arnold, Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid and ibuprofen. Aquat. Sci. 2003, 65, 342.
CrossRef | CAS |

[30]  J. Kockler, D. Kanakaraju, B. D. Glass, M. Oelgemöller, Photochemical and photocatalytic degradation of diclofenac and amoxicillin using natural and simulated sunlight. J. Sustain. Sci. Manage. 2012, 7, 23.
| CAS |

[31]  A. Achilleos, E. Hapeshi, N. P. Xekoukoulotakis, D. Mantzavinos, D. Fatta-Kassinos, Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem. Eng. J. 2010, 161, 53.
CrossRef | CAS |

[32]  L. Rizzo, S. Meric, D. Kassinos, M. Guida, F. Russo, V. Belgiorno, Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. 2009, 43, 979.
CrossRef | CAS | PubMed |

[33]  L. Rizzo, S. Meric, M. Guida, D. Kassinos, V. Belgiorno, Heterogeneous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 2009, 43, 4070.
CrossRef | CAS | PubMed |

[34]  P. Calza, V. A. Sakkas, C. Medana, C. Baiocchi, A. Dimou, E. Pelizzetti, T. Albanis, Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl. Catal. B 2006, 67, 197.
CrossRef | CAS |

[35]  T. Heberer, Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 2002, 266, 175.
CrossRef | CAS |

[36]  B. Ohtani, Photocatalysis A to Z – what we know and what we do not know in a scientific sense. J. Photochem. Photobiol. Photochem. Rev. 2010, 11, 157.
CrossRef | CAS |

[37]  A. M. Braun, M. T. Maurette, E. Oliveros, Photochemical Technology 1991 (Wiley-VCH: Weinheim).

[38]  APHA, Standard Methods for the Examination of the Water and Wastewater, 18th edn 1992 (American Public Health Association: Washington DC).

[39]  R. Salgado, V. J. Pereira, G. Carvalho, R. Soeiro, V. Gaffney, C. Almeida, V. V. Cardoso, E. Ferreira, M. J. Benoliel, T. A. Ternes, A. Oehmen, M. A. M. Reis, J. P. Noronha, Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. J. Hazard. Mater. 2013, 244–245, 516.
CrossRef | PubMed |

[40]  D. E. Moore, S. Robertsthomson, D. Zhen, C. C. Duke, photochemical studies on the antiinflammatory drug diclofenac. Photochem. Photobiol. 1990, 52, 685.
CrossRef | CAS | PubMed |

[41]  C. Martínez, M. Canle, M. I. Fernandez, J. A. Santaballa, J. Faria, Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B 2011, 107, 110.
CrossRef |

[42]  X. Van Doorslaer, P. M. Heynderickx, K. Demeestere, K. Debevere, H. Van Langenhove, J. Dewulf, TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study. Appl. Catal. B 2012, 111–112, 150.
CrossRef |

[43]  A. L. Giraldo, G. A. Peneula, R. A. Torres-Palna, N. J. Pino, R. A. Palominos, H. D. Mansilla, Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res. 2010, 44, 5158.
CrossRef | CAS | PubMed |

[44]  J. Blanco-Galvez, P. Fernández-Ibáñez, S. Malato-Rodríguez, Solar photocatalytic detoxification and disinfection of water: recent overview. J. Sol. Energy Eng. 2007, 129, 4.
CrossRef | CAS |

[45]  D. Friedmann, C. Mendive, D. Bahnemann, TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 2010, 99, 398.
CrossRef | CAS |

[46]  S. Basha, C. Barr, D. Keane, K. Nolan, A. Morrissey, M. Oelgemöller, J. M. Tobin, On the adsorption/photodegradation of amoxicillin in aqueous solutions by an integrated photocatalytic adsorbent (IPCA): experimental studies and kinetics analysis. Photochem. Photobiol. Sci. 2011, 10, 1014.
CrossRef | CAS | PubMed |

[47]  L. Yang, L. E. Yu, M. B. Ray, Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res. 2008, 42, 3480.
CrossRef | CAS | PubMed |

[48]  E. Hapeshi, A. Achilleos, M. I. Vasquez, C. Michael, N. P. Xekoukoulotakis, D. Mantzavinos, D. Kassinos, Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res. 2010, 44, 1737.
CrossRef | CAS | PubMed |

[49]  M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69.
CrossRef | CAS |

[50]  L. A. Pérez-Estrada, M. I. Maldonado, W. Gernjak, A. Agüera, A. R. Fernández-Alba, M. M. Ballesteros, S. Malato, Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal. Today 2005, 101, 219.
CrossRef |

[51]  L. A. Pérez-Estrada, S. Malato, W. Gernjak, A. Agüera, E. M. Thurman, I. Ferrer, A. R. Fernández-Alba, Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ. Sci. Technol. 2005, 39, 8300.
CrossRef | PubMed |

[52]  J. H. O. S. Pereira, V. J. P. Villar, M. T. Borges, O. González, S. Esplugas, R. A. R. Boaventura, Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Sol. Energy 2011, 85, 2732.
CrossRef | CAS |

[53]  U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. Photochem. Rev. 2008, 9, 1.
CrossRef | CAS |

[54]  D. Bahnemann, Photocatalytic water treatment: solar energy applications. Sol. Energy 2004, 77, 445.
CrossRef | CAS |

[55]  S. Loiselle, D. Vione, C. Minero, V. Maurino, A. Tognazzi, A. M. Dattilo, C. Rossi, L. Bracchini, Chemical and optical phototransformation of dissolved organic matter. Water Res. 2012, 46, 3197.
CrossRef | CAS | PubMed |

[56]  P. Calza, E. Pelizzetti, Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure Appl. Chem. 2001, 73, 1839.
CrossRef | CAS |

[57]  A. Agüera, L. A. P. Estrada, I. Ferrer, E. M. Thurman, S. Malato, A. R. Fernández-Alba, Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 2005, 40, 908.
CrossRef | PubMed |

[58]  C. Sirtori, A. Agüera, W. Gernjak, S. Malato, Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Res. 2010, 44, 2735.
CrossRef | CAS | PubMed |

[59]  C. Rodrigues-Silva, M. G. Maniero, S. Rath, J. R. Guimarães, Degradation of flumequine by photocatalysis and evaluation of microbial activity. Chem. Eng. J. 2013, 224, 46.
CrossRef | CAS |

[60]  V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L. Palmisano, S. Yurdakal, Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobiol. Photochem. Rev. 2012, 13, 224.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014