CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(1)

Effect of biogeochemical redox processes on the fate and transport of As and U at an abandoned uranium mine site: an X-ray absorption spectroscopy study

Lyndsay D. Troyer A , James J. Stone B and Thomas Borch A C D

A Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA.
B Department of Civil and Environmental Engineering South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA.
C Present address: Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA.
D Corresponding author. Email: borch@colostate.edu

Environmental Chemistry 11(1) 18-27 http://dx.doi.org/10.1071/EN13129
Submitted: 15 July 2013  Accepted: 30 September 2013   Published: 28 January 2014


 
PDF (745 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. Uranium and arsenic, two elements of human health concern, are commonly found at sites of uranium mining, but little is known about processes influencing their environmental behaviour. Here we focus on understanding the chemical and physical processes controlling uranium and arsenic transport at an abandoned uranium mine. We find that the use of sedimentation ponds limits the mobility of uranium; however, pond conditions at our site resulted in arsenic mobilisation. Our findings will help optimise restoration strategies for mine tailings.

Abstract. Although As can occur in U ore at concentrations up to 10 wt-%, the fate and transport of both U and As at U mine tailings have not been previously investigated at a watershed scale. The major objective of this study was to determine primary chemical and physical processes contributing to transport of both U and As to a down gradient watershed at an abandoned U mine site in South Dakota. Uranium is primarily transported by erosion at the site, based on decreasing concentrations in sediment with distance from the tailings. Sequential extractions and U X-ray absorption near-edge fine structure (XANES) fitting indicate that U is immobilised in a near-source sedimentation pond both by prevention of sediment transport and by reduction of UVI to UIV. In contrast to U, subsequent release of As to the watershed takes place from the pond partially due to reductive dissolution of Fe oxy(hydr)oxides. However, As is immobilised by adsorption to clays and Fe oxy(hydr)oxides in oxic zones and by formation of As–sulfide mineral phases in anoxic zones down gradient, indicated by sequential extractions and As XANES fitting. This study indicates that As should be considered during restoration of uranium mine sites in order to prevent transport.



References

[1]  A. Abdelouas, Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2006, 2, 335.
CrossRef | CAS |

[2]  J. J. Stone, L. D. Stetler, A. Schwalm, Final Report: North Cave Hills Abandoned Uranium Mines Impact Investigation. South Dakota School of Mines and Technology 2007, 1.

[3]  G. G. Kipp, J. J. Stone, L. D. Stetler, Arsenic and uranium transport in sediments near abandoned uranium mines in Harding County, South Dakota. Appl. Geochem. 2009, 24, 2246.
CrossRef | CAS |

[4]  L. N. Larson, G. G. Kipp, H. V. Mott, J. J. Stone, Sediment pore-water interactions associated with arsenic and uranium transport from the North Cave Hills mining region, South Dakota, USA. Appl. Geochem. 2012, 27, 879.
CrossRef | CAS |

[5]  L. N. Larson, J. J. Stone, Sediment-bound arsenic and uranium within the Bowman-Haley Reservoir, North Dakota. Water Air Soil Pollut. 2011, 219, 27.
CrossRef | CAS |

[6]  T. D. Waite, J. A. Davis, T. Payne, G. A. Waychunas, N. Xu, Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim. Cosmochim. Acta 1994, 58, 5465.
CrossRef | CAS |

[7]  G. Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri, H. Nitsche, Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3 (aq) species. Radiochim. Acta 2001, 89, 511.
CrossRef | CAS |

[8]  B. D. Stewart, M. A. Mayes, S. Fendorf, Impact of uranyl–calcium–carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. Environ. Sci. Technol. 2010, 44, 928.
CrossRef | CAS | PubMed |

[9]  W. Dong, W. P. Ball, C. Liu, Z. Wang, A. T. Stone, J. Bai, J. M. Zachara, Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment. Environ. Sci. Technol. 2005, 39, 7949.
CrossRef | CAS | PubMed |

[10]  J. R. Bargar, R. Bernier-Latmani, D. E. Giammar, B. M. Tebo, Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 2008, 4, 407.
CrossRef |

[11]  R. Bernier-Latmani, H. Veeramani, E. D. Vecchia, P. Junier, J. S. Lezama-Pacheco, E. I. Suvorova, J. O. Sharp, N. S. Wigginton, J. R. Bargar, Non-uraninite products of microbial UVI reduction. Environ. Sci. Technol. 2010, 44, 9456.
CrossRef | CAS | PubMed |

[12]  V. Sivaswamy, M. I. Boyanov, B. M. Peyton, S. Viamajala, R. Gerlach, W. A. Apel, R. K. Sani, A. Dohnalkova, K. M. Kemner, T. Borch, Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6. Biotechnol. Bioeng. 2011, 108, 264.
CrossRef | CAS | PubMed |

[13]  J. O. Sharp, J. S. Lezama-Pacheco, E. J. Schofield, P. Junier, K.-U. Ulrich, S. Chinni, H. Veeramani, C. Margot-Roquier, S. M. Webb, B. M. Tebo, D. E. Giammar, J. R. Bargar, R. Bernier-Latmani, Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochim. Cosmochim. Acta 2011, 75, 6497.
CrossRef | CAS |

[14]  T. Borch, R. Kretzschmar, A. Kappler, P. Van Cappellen, M. Ginder-Vogel, A. Voegelin, K. M. Campbell, Biogeochemical Redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 2010, 44, 15.
CrossRef | CAS | PubMed |

[15]  J. R. Bargar, K. H. Williams, K. M. Campbell, P. E. Long, J. E. Stubbs, E. I. Suvorova, J. S. Lezama-Pacheco, D. S. Alessi, M. Stylo, S. M. Webb, Uranium redox transition pathways in acetate-amended sediments. Proc. Natl. Acad. Sci. USA 2013, 110, 4506.
CrossRef | CAS |

[16]  S. E. Fendorf, H. A. Michael, A. Van Geen, Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 2010, 328, 1123.
CrossRef | CAS |

[17]  S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182.
CrossRef | CAS | PubMed |

[18]  K. J. Tufano, C. Reyes, C. W. Saltikov, S. E. Fendorf, Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 2008, 42, 8283.
CrossRef | CAS | PubMed |

[19]  J. Petrick, Monomethylarsonous acid (MMAIII) Is more toxic than arsenite in chang human hepatocytes. Toxicol. Appl. Pharmacol. 2000, 163, 203.
CrossRef | CAS | PubMed |

[20]  B. D. Kocar, T. Borch, S. Fendorf, Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim. Cosmochim. Acta 2010, 74, 980.
CrossRef | CAS |

[21]  P. A. O’Day, D. Vlassopoulos, R. Root, N. Rivera, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 13 703.
CrossRef | CAS |

[22]  P. M. Fox, J. A. Davis, R. Kukkadapu, D. M. Singer, J. R. Bargar, K. H. Williams, Abiotic UVI reduction by sorbed FeII on natural sediments. Geochim. Cosmochim. Acta 2013, 117, 266.
CrossRef | CAS |

[23]  D. E. Latta, M. I. Boyanov, K. M. Kemner, E. J. O'Loughlin, M. M. Scherer, Abiotic reduction of uranium by FeII in soil. Appl. Geochem. 2012, 27, 1512.
CrossRef | CAS |

[24]  B. Hua, B. Deng, Reductive immobilization of uranium(VI) by amorphous iron sulfide. Environ. Sci. Technol. 2008, 42, 8703.
CrossRef | CAS | PubMed |

[25]  B. Hua, H. Xu, J. Terry, B. Deng, Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems. Environ. Sci. Technol. 2006, 40, 4666.
CrossRef | CAS | PubMed |

[26]  S. P. Hyun, J. A. Davis, K. Sun, K. F. Hayes, Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ. Sci. Technol. 2012, 46, 3369.
CrossRef | CAS | PubMed |

[27]  H. Veeramani, A. C. Scheinost, N. Monsegue, Abiotic reductive immobilization of UVI by biogenic mackinawite. Sci.Technol. 2013, 47, 2361.
CrossRef | CAS |

[28]  D. R. Lovley, E. J. P. Phillips, Y. A. Gorby, E. R. Landa, Microbial reduction of uranium. Nature 1991, 350, 413.
CrossRef | CAS |

[29]  D. R. Lovley, E. Phillips, Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 1992, 58, 850.
| CAS | PubMed |

[30]  D. E. Cummings, F. Caccavo, S. Fendorf, R. F. Rosenzweig, Arsenic mobilization by the dissimilatory FeIII-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 1999, 33, 723.
CrossRef | CAS |

[31]  V. K. Stucker, K. H. Williams, M. J. Robbins, J. F. Ranville, Arsenic geochemistry in a biostimulated aquifer: an aqueous speciation study. Environ. Toxicol. Chem. 2013, 32, 1216.
CrossRef | CAS | PubMed |

[32]  R. Oremland, J. Stolz, The ecology of arsenic. Science 2003, 300, 939.
CrossRef | CAS | PubMed |

[33]  S. Fendorf, P. S. Nico, B. D. Kocar, Y. Masue, K. J. Tufano, Arsenic chemistry in soils and sediments. Dev. Soil Sci. 2010, 34, 357.
CrossRef | CAS |

[34]  W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment. Science 1989, 89, 713.
| CAS |

[35]  B. D. Kocar, S. E. Fendorf, Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environ. Sci. Technol. 2009, 43, 4871.
CrossRef | CAS | PubMed |

[36]  W. A. Gezahegne, C. Hennig, S. Tsushima, B. Planer-Friedrich, A. C. Scheinost, B. J. Merkel, EXAFS and DFT investigations of uranyl arsenate complexes in aqueous solution. Environ. Sci. Technol. 2012, 46, 2228.
CrossRef | CAS | PubMed |

[37]  Y. Tang, R. J. Reeder, Uranyl and arsenate cosorption on aluminum oxide surface. Geochim. Cosmochim. Acta 2009, 73, 2727.
CrossRef | CAS |

[38]  R. Donahue, M. J. Hendry, Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada. Appl. Geochem. 2003, 18, 1733.
CrossRef | CAS |

[39]  A. Abdelouas, W. Lutze, E. Nuttall, Chemical reactions of uranium in ground water at a mill tailings site. J. Contam. Hydrol. 1998, 34, 343.
CrossRef | CAS |

[40]  K. M. Campbell, R. K. Kukkadapu, N. P. Qafoku, A. D. Peacock, E. Lesher, K. H. Williams, J. R. Bargar, M. J. Wilkins, L. Figueroa, J. Ranville, J. A. Davis, P. E. Long, Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer. Appl. Geochem. 2012, 27, 1499.
CrossRef | CAS |

[41]  T. Ohnuki, N. Kozai, M. Samadfam, R. Yasuda, S. Yamamoto, K. Narumi, H. Naramoto, T. Murakami, The formation of autunite (Ca(UO2)2(PO4)2nH2O) within the leached layer of dissolving apatite: incorporation mechanism of uranium by apatite. Chem. Geol. 2004, 211, 1.
CrossRef | CAS |

[42]  K. R. Salome, S. J. Green, M. J. Beazley, S. M. Webb, J. E. Kostka, M. Taillefert, The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals. Geochim. Cosmochim. Acta 2013, 106, 344.
CrossRef | CAS |

[43]  R. Donahue, M. J. Hendry, P. Landine, Distribution of arsenic and nickel in uranium mill tailings, Rabbit Lake, Saskatchewan, Canada. Appl. Geochem. 2000, 15, 1097.
CrossRef | CAS |

[44]  J. Essilfie-Dughan, M. J. Hendry, J. Warner, T. Kotzer, Arsenic and iron speciation in uranium mine tailings using X-ray absorption spectroscopy. Appl. Geochem. 2013, 28, 11.
CrossRef | CAS |

[45]  B. J. Moldovan, D. T. Jiang, M. J. Hendry, Mineralogical characterization of arsenic in uranium mine tailings precipitated from iron-rich hydrometallurgical solutions. Environ. Sci. Technol. 2003, 37, 873.
CrossRef | CAS | PubMed |

[46]  J. L. Domingo, Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod. Toxicol. 2001, 15, 603.
CrossRef | CAS | PubMed |

[47]  E. S. Craft, A. W. Abu-Qare, M. M. Flaherty, M. C. Garofolo, H. L. Rincavage, M. B. Abou-Donia, Depleted and natural uranium: chemistry and toxicological effects. J. Toxicol. Env. Health B 2004, 7, 297.
| CAS |

[48]  G. W. Kunze, J. B. Dixon, Pretreatment for mineralogical analysis, in Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods (Ed. A. Klute) 1986, pp. 91–100 (Soil Science Society of America: Madison, WI ).

[49]  K. H. Tan, Methods of soil chemical analysis, in Soil Sampling, Preparation, and Analysis, 2nd edn 2005, pp. 82–98 (Taylor & Francis Group: Boca Raton, FL).

[50]  L. J. Poppe, V. F. Paskevich, J. C. Hathaway, D. S. Blackwood, Separation of the silt and clay fractions for x-ray powder diffraction by centrifugation, in A Laboratory Manual for X-Ray Powder Diffraction, US Geological Survey Open-File Report 01-041 2001 (Woods Hole, MA). Available at http://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/centrifu.htm [Verified 1 November 2013].

[51]  L. D. Whittig, W. R. Allardice, X-Ray diffraction techniques, in Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods (Ed. A. Klute) 1986, pp. 331–362 (Soil Science Society of America: Madison, WI).

[52]  W. Harris, G. N. White, X-Ray diffraction techniques for soil mineral identification, in Methods of Soil Analysis: Part 5. Mineralogical Methods (Eds A. L. Ulery, L. R. Drees) 2008, pp. 81–115 (Soil Science Society of America: Madison, WI).

[53]  P. N. Soltanpour, J. Benton Jones, S. M. Workman, Optical emission spectroscopy, in Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, 2nd edn (Ed. A. L. Page) 1982, pp. 55–57 (Soil Science Society of America: Madison, WI).

[54]  J.-H. Huang, R. Kretzschmar, Sequential extraction method for speciation of arsenate and arsenite in mineral soils. Anal. Chem. 2010, 82, 5534.
CrossRef | CAS | PubMed |

[55]  M. J. Beazley, R. J. Martinez, S. M. Webb, P. A. Sobecky, M. Taillefert, The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils. Geochim. Cosmochim. Acta 2011, 75, 5648.
CrossRef | CAS |

[56]  A. Tessier, P. Campbell, M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844.
CrossRef | CAS |

[57]  T. Borch, Y. Masue-Slowey, R. K. Kukkadapu, S. E. Fendorf, Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environ. Sci. Technol. 2007, 41, 166.
CrossRef | CAS | PubMed |

[58]  K. Amstaetter, T. Borch, P. Larese-Casanova, A. Kappler, Redox transformation of arsenic by FeII-activated goethite (α-FeOOH). Environ. Sci. Technol. 2010, 44, 102.
CrossRef | CAS | PubMed |

[59]  B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
CrossRef | CAS | PubMed |

[60]  E. J. Schofield, H. Veeramani, J. O. Sharp, E. Suvorova, R. Bernier-Latmani, A. Mehta, J. Stahlman, S. M. Webb, D. L. Clark, S. D. Conradson, E. S. Ilton, J. R. Bargar, Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1. Environ. Sci. Technol. 2008, 42, 7898.
CrossRef | CAS | PubMed |

[61]  P. A. O'day, N. Rivera, R. Root, S. Carroll, X-Ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. Am. Mineral. 2004, 89, 572.
| CAS |

[62]  R. M. Cornell, U. Schwertmann, Formation, in The Iron Oxides 2006, pp. 345–364 (Wiley-VCH: Weinheim, Germany).

[63]  J. J. Moran, M. K. Newburn, M. L. Alexander, R. L. Sams, J. F. Kelly, H. W. Kreuzer, Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis. Rapid Commun. Mass Spectrom. 2011, 25, 1282.
CrossRef | CAS | PubMed |

[64]  J. D. Wall, L. R. Krumholz, Uranium reduction. Annu. Rev. Microbiol. 2006, 60, 149.
CrossRef | CAS | PubMed |

[65]  J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, M. C. Duff, Y. A. Gorby, S. W. Li, K. M. Krupka, Reduction of UVI in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta 2000, 64, 3085.
CrossRef | CAS |

[66]  D. Langmuir, Carbonate chemistry, in Aqueous Environmental Geochemistry 1997, pp. 193–230 (Prentice Hall: Upper Saddle River, NJ).

[67]  R. J. Reeder, M. Nugent, C. D. Tait, D. E. Morris, S. M. Heald, K. M. Beck, W. P. Hess, A. Lanzirotti, Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta 2001, 65, 3491.
CrossRef | CAS |

[68]  Z. Zheng, T. K. Tokunaga, J. Wan, Influence of calcium carbonate on UVI sorption to soils. Environ. Sci. Technol. 2003, 37, 5603.
CrossRef | CAS | PubMed |

[69]  J. D. C. Begg, I. T. Burke, J. R. Lloyd, C. Boothman, S. Shaw, J. M. Charnock, K. Morris, Bioreduction behavior of UVI sorbed to sediments. Geomicrobiol. J. 2011, 28, 160.
CrossRef | CAS |

[70]  P. Smedley, D. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
CrossRef | CAS |

[71]  B. A. Manning, S. Goldberg, Adsorption and stability of arsenic(III) at the clay mineral – water interface. Environ. Sci. Technol. 1997, 31, 2005.
CrossRef | CAS |

[72]  M. F. Lengke, C. Sanpawanitchakit, R. N. Tempel, The oxidation and dissolution of arsenic-bearing sulfides. Can. Mineral. 2009, 47, 593.
CrossRef | CAS |

[73]  M. F. Lengke, R. N. Tempel, Reaction rates of natural orpiment oxidation at 25 to 40 °C and pH 68 to 82 and comparison with amorphous As2S3 oxidation. Geochim. Cosmochim. Acta 2002, 66, 3281.
CrossRef | CAS |

[74]  D. K. Newman, T. J. Beveridge, F. Morel, Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol. 1997, 63, 2022.
| CAS | PubMed |

[75]  B. C. Bostick, Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 2003, 67, 909.
CrossRef | CAS |

[76]  Agency for Toxic Substances and Disease Registry, Minimal risk levels (MRLs), in Toxicological Profile for Uranium 2013, pp. 20–21 (US Department of Health and Human Services, Public Health Service: Atlanta, GA).

[77]  S. Kelly, D. Hesterberg, B. Ravel, Analysis of soils and minerals using X-ray absorption spectroscopy, in Methods of Soil Analysis: Part 5. Mineralogical Methods (Eds A. L. Ulery, L. R. Drees), 2008, pp. 387–463 (Soil Science Society of America: Madison, WI).


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014