CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Open Access Article     |     Next >>   Contents Vol 10(6)

Organic phosphorus in the aquatic environment

Darren S. Baldwin

CSIRO Land and Water and the Murray–Darling Freshwater Research Centre, La Trobe University, PO Box 991, Wodonga, Vic. 3689, Australia. Email: darren.baldwin@csiro.au

Environmental Chemistry 10(6) 439-454 http://dx.doi.org/10.1071/EN13151
Submitted: 8 August 2013  Accepted: 21 October 2013   Published: 19 December 2013


 
 Full Text
 PDF (515 KB)
 Export Citation
 Print
  

Environmental context. Organic phosphorus can be one of the major fractions of phosphorus in many aquatic ecosystems. This paper discusses the distribution, cycling and ecological significance of five major classes of organic P in the aquatic environment and discusses several principles to guide organic P research into the future.

Abstract. Organic phosphorus can be one of the major fractions of phosphorus in many aquatic ecosystems. Unfortunately, in many studies the ‘organic’ P fraction is operationally defined. However, there are an increasing number of studies where the organic P species have been structurally characterised – in part because of the adoption of 31P NMR spectroscopic techniques. There are five classes of organic P species that have been specifically identified in the aquatic environment – nucleic acids, other nucleotides, inositol phosphates, phospholipids and phosphonates. This paper explores the identification, quantification, biogeochemical cycling and ecological significance of these organic P compounds. Based on this analysis, the paper then identifies a number of principles which could guide the research of organic P into the future. There is an ongoing need to develop methods for quickly and accurately identifying and quantifying organic P species in the environment. The types of ecosystems in which organic P dynamics are studied needs to be expanded; flowing waters, floodplains and small wetlands are currently all under-represented in the literature. While enzymatic hydrolysis is an important transformation pathway for the breakdown of organic P, more effort needs to be directed towards studying other potential transformation pathways. Similarly effort should be directed to estimating the rates of transformations, not simply reporting on the concentrations. And finally, further work is needed in elucidating other roles of organic P in the environment other than simply a source of P to aquatic organisms.

Additional keywords: 31P NMR, analysis, eutrophication, freshwater, marine, reactive phosphorus, sediment, soil, virus.


References

[1]  B. L. Turner, Appendix. Organic phosphorus compounds in the environment, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 381–388 (CABI: Cambridge, MA).

[2]  A. M. Mitchell, D. S. Baldwin, Organic phosphorus in the aquatic environment: speciation, transformations and interactions with nutrient cycles, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 309–324 (CABI: Cambridge, MA).

[3]  S. Newman, J. S. Robinson, Forms of organic phosphorus in water, soils, and sediments, in Phosophorus Biogeochemistry in Subtropical Ecosystems (Eds K. R. Reddy, G. A. O’Connor, C. L. Schelske) 1999, pp. 207–223 (Crc Press-Taylor & Francis Group: Boca Raton, FL).

[4]  I. D. McKelvie, Separation, preconcentration and speciation of organic phosphorus in environmental samples, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 1–20 (CABI: Cambridge, MA).

[5]  P. J. Worsfold, P. Monbet, A. D. Tappin, M. F. Fitzsimons, D. A. Stiles, I. D. McKelvie, Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: a review. Anal. Chim. Acta 2008, 624, 37.
CrossRef | CAS | PubMed |

[6]  F. Kizewski, Y. T. Liu, A. Morris, D. Hesterberg, Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. J. Environ. Qual. 2011, 40, 751.
CrossRef | CAS | PubMed |

[7]  L. M. Condron, S. Newman, Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J. Soils Sediments 2011, 11, 830.
CrossRef | CAS |

[8]  Standard Methods for the Examination of Water and Wastewater 2012 (American Public Health Association: Baltimore MD).

[9]  D. S. Baldwin, Reactive ‘organic’ phosphorus revisited. Water Res. 1998, 32, 2265.
CrossRef | CAS |

[10]  F. H. Denison, P. M. Haygarth, W. A. House, A. W. Bristow, The measurement of dissolved phosphorus compounds: evidence for hydrolysis during storage and implications for analytical definitions in environmental analysis. Int. J. Environ. Anal. Chem. 1998, 69, 111.
CrossRef | CAS |

[11]  W. T. Cooper, J. M. Llewelyn, G. L. Bennett, A. C. Stenson, V. J. M. Salters, Organic phosphorus speciation in natural waters by mass spectrometry, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 45–74 (CABI: Cambridge, MA).

[12]  A. L. Shober, D. L. Hesterberg, J. T. Sims, S. Gardner, Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. J. Environ. Qual. 2006, 35, 1983.
CrossRef | CAS | PubMed |

[13]  S. Keller, T. Q. Zhang, S. Webb, R. Brugam, K. Johnson, Z. Q. Lin, Effects of suburban land use on phosphorus fractions and speciation in the Upper Peruque Creek, Eastern Missouri. Water Environ. Res. 2008, 80, 316.
CrossRef | CAS | PubMed |

[14]  B. J. Cade-Menun, Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 21–44 (CABI: Cambridge, MA).

[15]  K. C. Ruttenberg, Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 1992, 37, 1460.
CrossRef | CAS |

[16]  D. A. Francko, R. T. Heath, UV-sensitive complex phosphorus – association with dissolved humic material and iron in a bog lake. Limnol. Oceanogr. 1982, 27, 564.
CrossRef | CAS |

[17]  P. J. Shaw, R. I. Jones, H. De Haan, The influence of humic substances on the molecular weight distributions of phosphate and iron in epilimnetic lake waters. Freshwater Biol. 2000, 45, 383.
CrossRef | CAS |

[18]  R. A. Minear, Characterization of naturally occuring dissolved organophosphorus compounds. Environ. Sci. Technol. 1972, 6, 431.
CrossRef | CAS |

[19]  M. D. Bailiff, D. M. Karl, Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986–87. Deep-Sea Res. A, Oceanogr. Res. Pap. 1991, 38, 1077.
CrossRef | CAS |

[20]  W. Siuda, R. J. Chróst, Concentration and susceptibility of dissolved DNA for enzyme degradation in lake water – some methodological remarks. Aquat. Microb. Ecol. 2000, 21, 195.
CrossRef |

[21]  S. Sakano, A. Kamatani, Determination of dissolved nucleic acids in seawater by the fluoresence dye ethidium bromide. Mar. Chem. 1992, 37, 239.
CrossRef | CAS |

[22]  B. L. Turner, N. Mahieu, L. M. Condron, Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Sci. Soc. Am. J. 2003, 67, 497.
CrossRef | CAS |

[23]  W. Siuda, R. J. Chróst, H. Gude, Distribution and origin of dissolved DNA in lakes of different trophic states. Aquat. Microb. Ecol. 1998, 15, 89.
CrossRef |

[24]  T. J. C. Beebee, Identification and analysis of nucleic-acids in natural fresh-waters. Sci. Total Environ. 1993, 135, 123.
CrossRef | CAS |

[25]  K. Reitzel, H. S. Jensen, M. Flindt, F. O. Andersen, Identification of dissolved nonreactive phosphorus in freshwater by precipitation with aluminum and subsequent 31P NMR analysis. Environ. Sci. Technol. 2009, 43, 5391.
CrossRef | CAS | PubMed |

[26]  K. Reitzel, J. Ahlgren, H. DeBrabandere, M. Waldeback, A. Gogoll, L. Tranvik, E. Rydin, Degradation rates of organic phosphorus in lake sediment. Biogeochem. 2007, 82, 15.
CrossRef | CAS |

[27]  D. S. Baldwin, The phosphorus composition of a diverse series of Australian sediments. Hydrobiol 1996, 335, 63.
CrossRef | CAS |

[28]  B. L. Turner, S. Newman, J. M. Newman, Organic phosphorus sequestration in subtropical treatment wetlands. Environ. Sci. Technol. 2006, 40, 727.
CrossRef | CAS | PubMed |

[29]  R. Shinohara, A. Imai, N. Kawasaki, K. Komatsu, A. Kohzu, S. Miura, T. Sano, T. Satou, N. Tomioka, Biogenic phosphorus compounds in sediment and suspended particles in a shallow eutrophic lake: a 31P-nuclear magnetic resonance (31P NMR) study. Environ. Sci. Technol. 2012, 46, 10572.
CrossRef | CAS | PubMed |

[30]  J. Vestergren, A. G. Vincent, M. Jansson, P. Persson, U. Istedt, G. Grobner, R. Giesler, J. Schleucher, High-Resolution characterization of organic phosphorus in soil extracts using 2D 1H–31P NMR Correlation Spectroscopy. Environ. Sci. Technol. 2012, 46, 3950.
CrossRef | CAS | PubMed |

[31]  A. G. Bravo, W. Wildi, J. Pote, Kinetics of plant material mass loss and DNA release in freshwater column. Ecotoxicol. Environ. Saf. 2010, 73, 1548.
CrossRef | CAS | PubMed |

[32]  V. Turk, A. S. Rehnstam, E. Lundberg, A. Hagstrom, Release of bacterial DNA by marine nanoflagellates: an intermediate step in phosphorus regeneration. Appl. Environ. Microbiol. 1992, 58, 3744.
| CAS | PubMed |

[33]  S. C. Jiang, J. H. Paul, Viral contribution to dissolved DNA in the marine environment as determined by differential centrifugation and kingdom probing. Appl. Environ. Microbiol. 1995, 61, 317.
| CAS | PubMed |

[34]  W. Reisser, S. Grein, C. Krambeck, Extracellular DNA in aquatic ecosystems may in part be due to phycovirus activity. Hydrobiol 1993, 252, 199.
CrossRef | CAS |

[35]  M. C. Alonso, V. Rodriguez, J. Rodriguez, J. J. Borrego, Role of ciliates, flagellates and bacteriophages on the mortality of marine bacteria and on dissolved-DNA concentration in laboratory experimental systems. J. Exp. Mar. Biol. Ecol. 2000, 244, 239.
CrossRef | CAS |

[36]  W. Siuda, H. Gude, Determination of dissolved deoxyribonucleic acid concentration in lake water. Aquat. Microb. Ecol. 1996, 11, 193.
CrossRef |

[37]  N. Ishii, Z. Kawabata, S. Nakano, M. G. Min, R. Takata, Microbial interactions responsible for dissolved DNA production in a hypereutrophic pond. Hydrobiol 1998, 380, 67.
CrossRef | CAS |

[38]  L. Riemann, K. Holmfeldt, J. Titelman, Importance of viral lysis and dissolved DNA for bacterioplankton activity in a P-limited estuary, northern Baltic Sea. Microb. Ecol. 2009, 57, 286.
CrossRef | CAS | PubMed |

[39]  J. Titelman, L. Riemann, K. Holmfeldt, T. Nilsen, Copepod feeding stimulates bacterioplankton activities in a low phosphorus system. Aquat. Biol. 2008, 2, 131.
CrossRef |

[40]  G. E. Pinchuk, C. Ammons, D. E. Culley, S. M. W. Li, J. S. McLean, M. F. Romine, K. H. Nealson, J. K. Fredrickson, A. S. Beliaev, Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Appl. Environ. Microbiol. 2008, 74, 1198.
CrossRef | CAS | PubMed |

[41]  M. Heun, L. Binnenkade, M. Kreienbaum, K. M. Thormann, Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2012, 78, 4400.
CrossRef | CAS | PubMed |

[42]  D. S. Baldwin, J. K. Beattie, L. M. Coleman, D. R. Jones, Phosphate ester hydrolysis facilitated by mineral phases. Environ. Sci. Technol. 1995, 29, 1706.
CrossRef | CAS | PubMed |

[43]  J. D. T. Arruda-Neto, L. Nieto, H. Righi, M. A. Cotta, H. Carrer, T. E. Rodrigues, G. C. Genofre, Fragmentation of extracellular DNA by long-term exposure to radiation from uranium in aquatic environments. J. Environ. Monit. 2012, 14, 2108.
CrossRef | CAS |

[44]  K. Reitzel, J. Ahlgren, E. Rydin, S. Egemose, B. L. Turner, M. Hupfer, Diagenesis of settling seston: identity and transformations of organic phosphorus. J. Environ. Monit. 2012, 14, 1098.
CrossRef | CAS | PubMed |

[45]  G. W. Beall, D. S. Sowersby, R. D. Roberts, M. H. Robson, L. K. Lewis, Analysis of oligonucleotide DNA binding and sedimentation properties of montmorillonite clay using ultraviolet light spectroscopy. Biomacromolecules 2009, 10, 105.
CrossRef | CAS | PubMed |

[46]  L. Celi, E. Barberis, Abiotic stabilization of organic phosphorus in the environment, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 113–132 (CABI: Cambridge, MA).

[47]  J. Ahlgren, K. Reitzel, L. Tranvik, A. Gogoll, E. Rydin, Degradation of organic phosphorus compounds in anoxic Baltic Sea sediments: a 31P nuclear magnetic resonance study. Limnol. Oceanogr. 2006, 51, 2341.
CrossRef | CAS |

[48]  A. Dell'Anno, R. Danovaro, Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 2005, 309, 2179.
CrossRef | CAS | PubMed |

[49]  T. Løvdal, T. Tanaka, T. F. Thingstad, Algal–bacterial competition for phosphorus from dissolved DNA, ATP, and orthophosphate in a mesocosm experiment. Limnol. Oceanogr. 2007, 52, 1407.
CrossRef |

[50]  K. C. Ruttenberg, D. J. Sulak, Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater. Geochim. Cosmochim. Acta 2011, 75, 4095.
CrossRef | CAS |

[51]  U. Böckelmann, A. Janke, R. Kuhn, T. R. Neu, J. Wecke, J. R. Lawrence, U. Szewzyk, Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol. Lett. 2006, 262, 31.
CrossRef | PubMed |

[52]  J. Gödeke, K. Paul, J. Lassak, K. M. Thormann, Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J. 2011, 5, 613.
CrossRef | PubMed |

[53]  A. Seper, V. H. I. Fengler, S. Roier, H. Wolinski, S. D. Kohlwein, A. L. Bishop, A. Camilli, J. Reidl, S. Schild, Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 2011, 82, 1015.
CrossRef | CAS | PubMed |

[54]  E. J. Monaghan, K. C. Ruttenberg, Dissolved organic phosphorus in the coastal ocean: reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf. Limnol. Oceanogr. 1999, 44, 1702.
CrossRef | CAS |

[55]  K. M. Björkman, D. M. Karl, Presence of dissolved nucleotides in the North Pacific Subtropical Gyre and their role in cycling of dissolved organic phosphorus. Aquat. Microb. Ecol. 2005, 39, 193.
CrossRef |

[56]  D. A. Francko, R. G. Wetzel, The isolation of cyclic adenosine 3′–5′-monophosphate (cAMP) from lakes of different trophic status – correlation with planktonic metabolic variables. Limnol. Oceanogr. 1982, 27, 27.
CrossRef | CAS |

[57]  M. P. Nawrocki, D. M. Karl, Dissolved ATP turnover in Bransfield Strait, Antarctica during a spring bloom. Mar. Ecol. Prog. Ser. 1989, 57, 35.
CrossRef | CAS |

[58]  A. G. Gilman, Protein binding assays for cyclic nucleotides. Adv. Cyclic Nucleotide Res. 1972, 2, 9.
| CAS | PubMed |

[59]  H. De Brabandere, N. Forsgard, L. Israelsson, J. Petterson, E. Rydin, M. Waldeback, P. J. R. Sjoberg, Screening for organic phosphorus compounds in aquatic sediments by liquid chromatography coupled to ICP-AES and ESI-MS/MS. Anal. Chem. 2008, 80, 6689.
CrossRef | CAS | PubMed |

[60]  F. Azam, R. E. Hodson, Dissolved ATP in the sea and its utilization by marine bacteria. Nature 1977, 267, 696.
CrossRef | CAS | PubMed |

[61]  A. Bruns, U. Nubel, H. Cypionka, J. Overmann, Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 2003, 69, 1980.
CrossRef | CAS | PubMed |

[62]  A. Bruns, H. Cypionka, J. Overmann, Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 2002, 68, 3978.
CrossRef | CAS | PubMed |

[63]  R. T. Heath, Microbial turnover of organic phosphorus in aquatic systems, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 185–204 (CABI: Cambridge, MA).

[64]  B. L. Turner, M. J. Paphazy, P. M. Haygarth, I. D. McKelvie, Inositol phosphates in the environment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 449.
CrossRef | CAS | PubMed |

[65]  I. D. McKelvie, Inositol phosphates in aquatic systems, in Inositol Phosphates: Linking Agriculture and the Environment (Eds B. L. Turner, A. E. Richardson, E. J. Mullaney) 2007, pp. 261–278 (CABI: Cambridge, MA).

[66]  C. J. De Groot, H. L. Golterman, On the presence of organic phosphate in some Camargue sediments: evidence of the importance of phytate. Hydrobiol 1993, 252, 117.
CrossRef | CAS |

[67]  M. Suzumura, A. Kamatani, Isolation and determination of inositol hexaphosphate in sediments from Tokyo Bay. Geochim. Cosmochim. Acta 1993, 57, 2197.
CrossRef | CAS |

[68]  H. El-Rifai, M. Heerboth, T. E. Gedris, S. Newman, W. Orem, W. T. Cooper, NMR and mass spectrometry of phosphorus in wetlands. Eur. J. Soil Sci. 2008, 59, 517.
CrossRef | CAS |

[69]  S. E. Herbes, H. E. Allen, K. H. Mancy, Enzymatic characterization of soluble reactive organic phosphorus in lake water. Science 1975, 187, 432.
CrossRef | CAS | PubMed |

[70]  I. D. McKelvie, B. T. Hart, T. J. Cardwell, R. W. Cattrall, Use of imobilised phytase and flow injection for the determination of phosphorus species in natural waters. Anal. Chim. Acta 1995, 316, 277.
CrossRef | CAS |

[71]  P. Monbet, I. D. McKelvie, P. J. Worsfold, Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England). Geochim. Cosmochim. Acta 2009, 73, 1027.
CrossRef | CAS |

[72]  B. J. Cade-Menun, J. A. Navaratnam, M. R. Walbridge, Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 2006, 40, 7874.
CrossRef | CAS | PubMed |

[73]  B. L. Turner, S. Newman, Phosphorus cycling in wetland soils: the importance of phosphate diesters. J. Environ. Qual. 2005, 34, 1921.
CrossRef | CAS | PubMed |

[74]  A. W. Cheesman, E. J. Dunne, B. L. Turner, K. R. Reddy, Soil phosphorus forms in hydrologically isolated wetlands and surrounding pasture uplands. J. Environ. Qual. 2010, 39, 1517.
CrossRef | CAS | PubMed |

[75]  C. Jørgensen, H. S. Jensen, F. O. Andersen, S. Egemose, K. Reitzel, Occurrence of orthophosphate monoesters in lake sediments: significance of myo- and scyllo-inositol hexakisphosphate. J. Environ. Monit. 2011, 13, 2328.
CrossRef | PubMed |

[76]  B. L. Turner, K. Weckstrom, Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments. J. Paleolimnol. 2009, 42, 391.
CrossRef |

[77]  L. Celi, E. Barberis, Abiotic reactions of inositol phosphates in soils, in Inositol Phosphates: Linking Agriculture and the Environment (Eds B. L. Turner, A. E. Richardson, E. J. Mullaney) 2007, pp. 207–220 (CABI: Cambridge, MA).

[78]  B. L. Turner, Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol sterioisomers, in Inositol Phosphates: Linking Agriculture and the Environment (Eds B. L. Turner, A. E. Richardson, E. J. Mullaney) 2007, pp. 186–206 (CABI: Cambridge, MA).

[79]  M. Suzumura, A. Kamatani, Origin and distribution of inositol hexaphosphate in estuarine and coastal sediments. Limnol. Oceanogr. 1995, 40, 1254.
CrossRef | CAS |

[80]  C. D. Giles, B. J. Cade-Menun, J. E. Hill, The inositol phosphates in soils and manures: abundance, cycling, and measurement. Can. J. Soil Sci. 2011, 91, 397.
CrossRef |

[81]  V. Kumar, A. K. Sinha, H. P. S. Makkar, G. De Boeck, K. Becker, Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutr. (Berl.) 2012, 96, 335.
CrossRef | CAS | PubMed |

[82]  C. A. Brearley, D. E. Hanke, Inositol phosphates in the duckweed Spirodela polyrhiza L. Biochem. J. 1996, 314, 215.
| CAS | PubMed |

[83]  R. Oren Benaroya, E. Zamski, E. Tel-Or, L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem. 2004, 42, 97.
CrossRef | CAS |

[84]  M. Reina, J. L. Espinar, L. Serrano, Sediment phosphate composition in relation to emergent macrophytes in the Donana Marshes (SW Spain). Water Res. 2006, 40, 1185.
CrossRef | CAS | PubMed |

[85]  C. W. Cheng, B. L. Lim, Beta-propeller phytases in the aquatic environment. Arch. Microbiol. 2006, 185, 1.
CrossRef | CAS |

[86]  B. L. Lim, P. Yeung, C. Cheng, J. E. Hill, Distribution and diversity of phytate-mineralizing bacteria. ISME J. 2007, 1, 321.
CrossRef | CAS | PubMed |

[87]  J. E. Hill, B. J. Cade-Menun, Phosphorus-31 nuclear magnetic resonance spectroscopy transect study of poultry operations on the Delmarva Peninsula. J. Environ. Qual. 2009, 38, 130.
CrossRef | CAS | PubMed |

[88]  M. Suzumura, A. Kamatani, Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments – implications for the phosphorus cycle. Geochim. Cosmochim. Acta 1995, 59, 1021.
CrossRef | CAS |

[89]  H. Golterman, J. Paing, L. Serrano, E. Gomez, Presence of and phosphate release from polyphosphates or phytate phosphate in lake sediments. Hydrobiol. 1998, 364, 99.
CrossRef |

[90]  E. E. Roden, J. W. Edmonds, Phosphate mobilization in iron-rich anaerobic sediments: microbial FeIII oxide reduction versus iron-sulfide formation. Arch. Hydrobiol. 1997, 139, 347.
| CAS |

[91]  W. Siuda, R. J. Chróst, Utilization of selected dissolved organic phosphorus compounds by bacteria in lake water under non-limiting orthophosphate conditions. Pol. J. Environ. Stud. 2001, 10, 475.
| CAS |

[92]  M. Suzumura, Phospholipids in marine environments: a review. Talanta 2005, 66, 422.
CrossRef | CAS | PubMed |

[93]  P. I. Boon, P. Virtue, P. D. Nichols, Microbial consortia in wetland sediments: A biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar. Freshwater Res. 1996, 47, 27.
CrossRef | CAS |

[94]  A. Sanseverino, M. D. Bastviken, I. Sundh, J. Pickova, A. Enrich-Prast, Methane carbon supports aquatic food webs to the fish level. PLoS ONE 2012, 7,
CrossRef | CAS | PubMed |

[95]  J. Handelsman, Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669.
CrossRef | CAS | PubMed |

[96]  M. Suzumura, E. D. Ingall, Concentrations of lipid phosphorus and its abundance in dissolved and particulate organic phosphorus in coastal seawater. Mar. Chem. 2001, 75, 141.
CrossRef | CAS |

[97]  O. Oku, A. Kamatani, Phospholipid in plankton samples from Tokyo Bay and Sagami Bay. Nippon Suisan Gakkai Shi 1995, 61, 588.
CrossRef | CAS |

[98]  M. S. Mills, E. M. Thurman, J. Ertel, K. A. Thorn, Organic geochemistry and sources of natural aquatic foams, in Humic and Fulvic Acids: Isolation, Structure, and Environmental Role (Eds J. S. Gaffney, N. A. Marley, S. B. Clark) 1996, pp. 151–192 (American Chemical Society: Washington, DC).

[99]  B. A. S. Van Mooy, T. Moutin, S. Duhamel, P. Rimmelin, F. Van Wambeke, Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean. Biogeosci. 2008, 5, 133.
CrossRef | CAS |

[100]  B. A. S. Van Mooy, H. F. Fredricks, B. E. Pedler, S. T. Dyhrman, D. M. Karl, M. Koblizek, M. W. Lomas, T. J. Mincer, L. R. Moore, T. Moutin, M. S. Rappe, E. A. Webb, Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 2009, 458, 69.
CrossRef | CAS |

[101]  L. L. Clark, E. D. Ingall, R. Benner, Marine organic phosphorus cycling: novel insights from nuclear magnetic resonance. Am. J. Sci. 1999, 299, 724.
CrossRef | CAS |

[102]  B. Nowack, Environmental chemistry of phosphonates. Water Res. 2003, 37, 2533.
CrossRef | CAS | PubMed |

[103]  R. H. Coupe, S. J. Kalkhoff, P. D. Capel, C. Gregoire, Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 2012, 68, 16.
CrossRef | CAS | PubMed |

[104]  M. A. Nanny, R. A. Minear, Characterization of soluble unreactive phosphorus using 31P nuclear magnetic resonance spectroscopy. Mar. Geol. 1997, 139, 77.
CrossRef |

[105]  E. D. Ingall, P. A. Schroeder, R. A. Berner, The nature of organic phosphorus in marine sediments – new insights from 31P. Geochim. Cosmochim. Acta 1990, 54, 2617.
CrossRef | CAS |

[106]  E. Börjesson, L. Torstensson, New methods for determination of glyphosate and (aminomethyl)phosphonic acid in water and soil. J. Chromatogr. A 2000, 886, 207.
CrossRef | PubMed |

[107]  C. Y. Hao, D. Morse, F. Morra, X. M. Zhao, P. Yang, B. Nunn, Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandem mass spectrometry using reversed-phase and weak anion-exchange mixed-mode column. J. Chromatogr. A 2011, 1218, 5638.
CrossRef | CAS |

[108]  C. L. Young, E. D. Ingall, Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis. Aquat. Geochem. 2010, 16, 563.
CrossRef | CAS |

[109]  L. C. Kolowith, E. D. Ingall, R. Benner, Composition and cycling of marine organic phosphorus. Limnol. Oceanogr. 2001, 46, 309.
CrossRef | CAS |

[110]  C. R. Benitez-Nelson, L. O'Neill, L. C. Kolowith, P. Pellechia, R. Thunell, Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol. Oceanogr. 2004, 49, 1593.
CrossRef | CAS |

[111]  A. Paytan, B. J. Cade-Menun, K. McLaughlin, K. L. Faul, Selective phosphorus regeneration of sinking marine particles: evidence from 31P-NMR. Mar. Chem. 2003, 82, 55.
CrossRef | CAS | CAS |

[112]  P. Sannigrahi, E. Ingall, Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters: evidence from 31P NMR. Geochem. Trans. 2005, 6, 52.
CrossRef | CAS | CAS |

[113]  L. M. Dong, Z. F. Yang, X. H. Liu, G. N. Liu, Investigation into organic phosphorus species in sediments of Baiyangdian Lake in China measured by fractionation and 31P NMR. Environ. Monit. Assess. 2012, 184, 5829.
CrossRef | CAS | CAS |

[114]  J. Y. Liu, H. Wang, H. J. Yang, Y. J. Ma, O. C. Cai, Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environ. Pollut. 2009, 157, 49.
CrossRef | CAS | CAS |

[115]  R. Y. Zhang, L. Y. Wang, F. C. Wu, B. A. Song, Phosphorus speciation in the sediment profile of Lake Erhai, southwestern China: fractionation and 31P NMR. J. Environ. Sci. (China) 2013, 25, 1124.
CrossRef | CAS | CAS |

[116]  X. L. Bai, S. M. Ding, C. X. Fan, T. Liu, D. Shi, L. Zhang, Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China. Environ. Pollut. 2009, 157, 2507.
CrossRef | CAS | CAS |

[117]  A. W. Cheesman, B. L. Turner, K. R. Reddy, Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland. Soil Sci. Soc. Am. J. 2012, 76, 1496.
CrossRef | CAS | CAS |

[118]  I. N. Ilikchyan, R. M. L. McKay, J. P. Zehr, S. T. Dyhrman, G. S. Bullerjahn, Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria. Environ. Microbiol. 2009, 11, 1314.
CrossRef | CAS | CAS | PubMed |

[119]  S. T. Dyhrman, P. D. Chappell, S. T. Haley, J. W. Moffett, E. D. Orchard, J. B. Waterbury, E. A. Webb, Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 2006, 439, 68.
CrossRef | CAS | CAS | PubMed |

[120]  H. W. Luo, H. M. Zhang, R. A. Long, R. Benner, Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 2011, 62, 61.
CrossRef |

[121]  J. A. Gilbert, S. Thomas, N. A. Cooley, A. Kulakova, D. Field, T. Booth, J. W. McGrath, J. P. Quinn, I. Joint, Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Environ. Microbiol. 2009, 11, 111.
CrossRef | CAS | CAS | PubMed |

[122]  Y. Chen, F. Wu, Y. Lin, N. Deng, N. Bazhin, E. Glebov, Photodegradation of glyphosate in the ferrioxalate system. J. Hazard. Mater. 2007, 148, 360.
CrossRef | CAS | CAS | PubMed |

[123]  D. M. Karl, L. Beversdorf, K. M. Bjorkman, M. J. Church, A. Martinez, E. F. DeLong, Aerobic production of methane in the sea. Nat. Geosci. 2008, 1, 473.
CrossRef | CAS | CAS |

[124]  S. S. Kamat, H. J. Williams, L. J. Dangott, M. Chakrabarti, F. M. Raushel, The catalytic mechanism for aerobic formation of methane by bacteria. Nature 2013, 497, 132.
CrossRef | CAS | CAS | PubMed |

[125]  J. Lehmann, D. Solomon, J. A. Brandes, H. Fleckenstein, C. Jacobsen, J. Theieme, Synchrotron-based near-edge X-ray spectroscopy of NOM in soils and sediments, in Biophysico-Chemical Processes Involving Natural Non-Living Organic Matter in Environmental Systems (Eds N. Sensei, B. Xing, P. M. Huang) 2009, pp. 723–773 (Wiley: Hoboken, NJ).

[126]  M. Heerboth, Speciation of Organic Phosphorus in Soils and Surface Waters by Liquid Chromatography with High Resolution Mass Spectrometry Detection 2007, Ph.D Thesis, Florida State University, Tallahassee.

[127]  R. Maranger, D. F. Bird, Viral abundance in aquatic ecosystems – a comparison between marine and fresh waters. Mar. Ecol. Prog. Ser. 1995, 121, 217.
CrossRef |

[128]  S. W. Wilhelm, A. R. Matteson, Freshwater and marine virioplankton: a brief overview of commonalities and differences. Freshwater Biol. 2008, 53, 1076.
CrossRef |

[129]  D. Lymer, E. S. Lindstrom, K. Vrede, Variable importance of viral-induced bacterial mortality along gradients of trophic status and humic content in lakes. Freshwater Biol. 2008, 53, 1101.
CrossRef | CAS | CAS |

[130]  D. Lymer, J. B. Logue, C. P. D. Brussaard, A. C. Baudoux, K. Vrede, E. S. Lindstrom, Temporal variation in freshwater viral and bacterial community composition. Freshwater Biol. 2008, 53, 1163.
CrossRef | CAS | CAS |

[131]  D. Lymer, K. Vrede, Nutrient additions resulting in phage release and formation of non-nucleoid-containing bacteria. Aquat. Microb. Ecol. 2006, 43, 107.
CrossRef |

[132]  R. Olsson, R. Giesler, J. S. Loring, P. Persson, Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions. Langmuir 2010, 26, 18760.
CrossRef | CAS | CAS | PubMed |

[133]  J. A. Howitt, D. S. Baldwin, G. N. Rees, B. T. Hart, Photodegradation, interaction with iron oxides and bioavailability of dissolved organic matter from forested floodplain sources. Mar. Freshwater Res. 2008, 59, 780.
CrossRef | CAS | CAS |

[134]  Z. Yiyong, UV-sensitive P compounds: release mechanism, seasonal fluctuation and inhibitory effects on alkaline phosphatase activity in a shallow Chinese freshwater lake (Donghu Lake). Hydrobiol 1996, 335, 55.
CrossRef |

[135]  D. S. Baldwin, G. N. Rees, A. M. Mitchell, G. Watson, J. Williams, The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 2006, 26, 455.
CrossRef |

[136]  G. Englund, S. D. Cooper, Scale effects and extrapolation in ecological experiments. Adv. Ecol. Res 2003, 33, 161.
CrossRef |

[137]  D. S. Baldwin, Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnol. Oceanogr. 1996, 41, 1725.
CrossRef |

[138]  D. Degenhardt, D. Humphries, A. J. Cessna, P. Messing, P. H. Badiou, R. Raina, A. Farenhorst, D. J. Pennock, Dissipation of glyphosate and aminomethylphosphonic acid in water and sediment of two Canadian prairie wetlands. J. Environ. Sci. Health B 2012, 47, 631.
CrossRef | CAS | CAS | PubMed |

[139]  D. P. Jaisi, R. E. Blake, Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates. Geochim. Cosmochim. Acta 2010, 74, 3199.
CrossRef | CAS |

[140]  D. P. Jaisi, R. K. Kukkadapu, L. M. Stout, T. Varga, R. E. Blake, Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotope ratios in phosphate. Environ. Sci. Technol. 2011, 45, 6254.
CrossRef | CAS | PubMed |

[141]  M. Vila-Costa, S. Sharma, M. A. Moran, E. O. Casamayor, Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environ. Microbiol. 2013, 15, 1190.
CrossRef | CAS | PubMed |

[142]  M. A. Moran, Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 2009, 4, 329.

[143]  A. M. Mitchell, D. S. Baldwin, G. N. Rees, Alterations to potential phosphorus release processes from anaerobic freshwater sediments with additions of different species of labile carbon, in Phosphates in Sediments (Eds L. Serrano, H. L. Golterman) 2005, pp. 43–54 (Backhuys Publishers: Leiden, the Netherlands).

[144]  J. A. Brandes, E. Ingall, D. Paterson, Characterization of minerals and organic phosphorus species in marine sediments using soft X-ray fluorescence spectromicroscopy. Mar. Chem. 2007, 103, 250.
CrossRef | CAS |

[145]  Z. He, C. W. Honeycutt, T. Ohno, J. F. Hunt, B. J. Cade-Menun, Phosphorus features in FT-IR spectra of natural organic matter. Chin. J. Geochem 2006, 25, 259.
CrossRef |


   
 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014