Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT (Open Access)

Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation and single particle ICP-MS)

Kim Proulx A and Kevin J. Wilkinson A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Biophysical Environmental Chemistry group, University of Montreal, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada.

B Corresponding author. Email: kj.wilkinson@umontreal.ca

Environmental Chemistry 11(4) 392-401 https://doi.org/10.1071/EN13232
Submitted: 17 December 2013  Accepted: 2 May 2014   Published: 24 July 2014

Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND

Environmental context. The effects of engineered nanoparticles on the environment and on human health are difficult to evaluate largely because nanoparticles are so difficult to measure. The main problems are that concentrations are low and the engineered nanoparticles are often difficult to distinguish from the environmental matrices in which they are found. We report a separation technique that facilitates the detection of engineered nanoparticles in natural waters.

Abstract. Few analytical techniques are presently able to detect and quantify engineered nanoparticles (ENPs) in the environment. The major challenges result from the complex matrices of environmental samples and the low concentrations at which the ENPs are expected to be found. Separation techniques such as asymmetric flow field flow fractionation (AF4) and more recently, hydrodynamic chromatography (HDC) have been used to partly resolve ENPs from their complex environmental matrices. In this paper, HDC was first coupled to light scattering detectors in order to develop a method that would allow the separation and detection of ENPs spiked into a natural water. Size fractionated samples were characterised using off-line detectors including analytical ultracentrifugation (AUC), dynamic light scattering (DLS) and single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). HDC was able to separate a complex mixture of polystyrene, silver and gold nanoparticles (radii of 60, 40, 20 and 10 nm) contained within a river water matrix. Furthermore, the feasibility of using HDC coupled to SP-ICP-MS was demonstrated by detecting 4 µg L–1 of a 20-nm (radius) nAg in a river water sample.


References

[1]  M. F. Hochella, Nanoscience and technology the next revolution in the Earth sciences. Earth Planet. Sci. Lett. 2002, 203, 593.
Nanoscience and technology the next revolution in the Earth sciences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvF2ksbw%3D&md5=684beb00eb2a6c772fe4a3b0690e32a0CAS |

[2]  M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006, 40, 4336.
Assessing the risks of manufactured nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFWgsb4%3D&md5=658e5cb90b427a2f73b2955afad59c89CAS | 16903268PubMed |

[3]  D. P. Rakcheev, A. Philippe, G. E. Schaumann, Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates. Anal. Chem. 2013, 85, 10 643.
Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OkurnP&md5=06728bb042b93ebcf1baba0668ea8bf5CAS |

[4]  K. Tiede, A. B. A. Boxall, X. Wang, D. Gore, D. Tiede, M. Baxter, H. David, S. P. Tear, J. Lewis, Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. J. Anal. At. Spectrom. 2010, 25, 1149.
Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVSjs7o%3D&md5=c8248493cdfd4364934aac2c0b61f871CAS |

[5]  K. Tiede, A. B. A. Boxall, D. Tiede, S. P. Tear, H. David, J. Lewis, A robust size-characterisation methodology for studying nanoparticle behaviour in ‘real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J. Anal. At. Spectrom. 2009, 24, 964.
A robust size-characterisation methodology for studying nanoparticle behaviour in ‘real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Slt78%3D&md5=2278c2cb21bd8c913e8fd0c87d1b47a9CAS |

[6]  R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, K. J. Wilkinson, Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 2009, 43, 7277.
Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Sgsbw%3D&md5=4d8c462ebf85e0991b1c816166c5abe1CAS | 19848134PubMed |

[7]  R. Kaegi, A. Voegelin, C. Ort, B. Sinnet, B. Thalmann, J. Krismer, H. Hagendorfer, M. Elumelu, E. Mueller, Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 2013, 47, 3866.
Fate and transformation of silver nanoparticles in urban wastewater systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVGhtLs%3D&md5=32518d69c9d9a270826a2c5b72f87cdbCAS | 23571111PubMed |

[8]  H. Weinberg, A. Galyean, M. Leopold, Evaluating engineered nanoparticles in natural waters. TRAC – Trends in Analytical Chemistry. 2011, 30, 72.
Evaluating engineered nanoparticles in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2mt7jE&md5=439ef2ab80e67242af20d2550cf4b28dCAS |

[9]  S. A. Cumberland, J. R. Lead, Particle size distributions of silver nanoparticles at environmentally relevant conditions. J. Chromatogr. A 2009, 1216, 9099.
Particle size distributions of silver nanoparticles at environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSgsbvM&md5=158b224a35cfc215e0ec010da838713fCAS | 19647834PubMed |

[10]  T. J. Cho, V. A. Hackley, Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV-Vis detection. Anal. Bioanal. Chem. 2010, 398, 2003.
Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV-Vis detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVygs7vJ&md5=a71e894cbd213f9a1fce72048fafe1e1CAS | 20803340PubMed |

[11]  M. E. Hoque, K. Khosravi, K. Newman, C. D. Metcalfe, Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry. J. Chromatogr. A 2012, 1233, 109.
Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Cnt7s%3D&md5=fa07936c3b8ac9c5b5433d5f2f798c4aCAS | 22381889PubMed |

[12]  E. P. Gray, T. A. Bruton, C. P. Higgins, R. U. Halden, P. Westerhoff, J. F. Ranville, Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1532.
Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOnu77O&md5=8d8f2ca8e84ec08d5b7d9d4b0dfff658CAS |

[13]  A. M. Striegel, A. K. Brewer, Hydrodynamic chromatography. Annu. Rev. Anal. Chem. 2012, 5, 15.
Hydrodynamic chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GmtLvN&md5=b248f0de25dad0b89970936ebbc153feCAS |

[14]  K. J. Wilkinson, J. R. Lead (Eds), Environmental Colloids and Particles: Behaviour, Structure, and Characterisation 2007 (Wiley: Chichester, UK).

[15]  I. Perevyazko, A. Vollrath, S. Hornig, G. M. Pavlov, U. S. Schubert, Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy. J. Polym. Sci. A Polym. Chem. 2010, 48, 3924.
Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFSktbw%3D&md5=f23308d34dd654d1ae078990fd6659deCAS |

[16]  K. L. Planken, H. Colfen, Analytical ultracentrifugation of colloids. Nanoscale. 2010, 2, 1849.
Analytical ultracentrifugation of colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2nu7fM&md5=3f4b5e3563a52605397ec3b4d143dc37CAS | 20820642PubMed |

[17]  A. Bootz, V. Vogel, D. Schubert, J. Kreuter, Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004, 57, 369.
Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslWlu7g%3D&md5=862bb2ec6ba2c978652e7aab07b4c83fCAS | 15018998PubMed |

[18]  F. Laborda, J. Jimenez-Lamana, E. Bolea, J. R. Castillo, Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011, 26, 1362.
Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVaqtro%3D&md5=573f705c12ca8eb90989c17d60dc11d3CAS |

[19]  C. Degueldre, P. Y. Favarger, Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf. A Physicochem. Eng. Asp. 2003, 217, 137.
Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVWhurk%3D&md5=5cca14f0ea5faf80356a6364d532d449CAS |

[20]  M. Hadioui, C. Peyrot, K. J. Wilkinson, Improvements to single particle ICP-MS by the on-line coupling of ion exchange resins. Anal. Chem. 2014, 86, 4668.
Improvements to single particle ICP-MS by the on-line coupling of ion exchange resins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVGlu78%3D&md5=2ebb5f2bb6b95ab80e948efa62e917c1CAS | 24745850PubMed |

[21]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, E. P. Gray, C. P. Higgins, J. F. Ranville, Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 2012, 46, 12 272.
Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFehu7g%3D&md5=2c959666a930cc02c7505c4a3ade3decCAS |

[22]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, J. F. Ranville, Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 9361.
Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCrsLvO&md5=d3106fbeaa0633f88e64814967a64db4CAS | 22074486PubMed |

[23]  D. M. Mitrano, E. K. Lesher, A. Bednar, J. Monserud, C. P. Higgins, J. F. Ranville, Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem. 2012, 31, 115.
Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yktr7E&md5=9234fb3e71b09355b5b281b35d380b3dCAS | 22012920PubMed |

[24]  B. Franze, I. Strenge, C. Engelhard, Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles. J. Anal. At. Spectrom. 2012, 27, 1074.
Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFSksb4%3D&md5=f2cef28056b5117f09af89e81bded468CAS |

[25]  D. Mahl, J. Diendorf, W. Meyer-Zaika, M. Epple, Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 377, 386.
Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKqtL8%3D&md5=1aba8d1413c753177594a162f1d849d6CAS |

[26]  J. W. Dolan, Why do Peaks Tail? 2003 (BASi Northwest Laboratory: McMinnville, OR, USA). Available at http://www.chromatographyonline.com/lcgc/data/articlestandard/lcgceurope/382003/69793/article.pdf [Verified 6 June 2014].

[27]  L. R. Snyder, J. J. Kirkland, J. L. Glajch, Practical HPLC Method Development 1997 (Wiley: New York).

[28]  H. Small, M. A. Langhorst, Hydrodynamic chromatography. Anal. Chem. 1982, 54, 892A.
Hydrodynamic chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksVCrsLo%3D&md5=3b25ba0a99f2f64db6625c161bfeafdfCAS |

[29]  J. R. Lead, K. J. Wilkinson, S. Balnois, B. J. Cutak, C. K. Larive, S. Assemi, R. Beckett, Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation. Environ. Sci. Technol. 2000, 34, 3508.
Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance, and flow field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1Wgurs%3D&md5=8f88bb7bf61017aa91057db803764a13CAS |

[30]  J. R. Lead, K. J. Wilkinson, Aquatic colloids and nanoparticles: current knowledge and future trends. Environ. Chem. 2006, 3, 159.
Aquatic colloids and nanoparticles: current knowledge and future trends.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1ersL0%3D&md5=f74241c0b96f561140b9a29645c4cd0fCAS |

[31]  M. Hadioui, S. Leclerc, K. J. Wilkinson, Multimethod quantification of Ag+ release from nanosilver. Talanta 2013, 105, 15.
Multimethod quantification of Ag+ release from nanosilver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1WjurY%3D&md5=a2cd9d269a709af1c2d216816cd619e6CAS | 23597981PubMed |

[32]  J. Tuoriniemi, G. Cornelis, M. Hassellov, Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal. Chem. 2012, 84, 3965.
Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVyrsr4%3D&md5=db0f4db85739ea46a260f418e658aab0CAS | 22483433PubMed |