Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

FeIIaq–FeIIIoxide electron transfer and Fe exchange: effect of organic carbon

Timothy Pasakarnis A , Michael L. McCormick B , Gene F. Parkin A , Aaron Thompson C and Michelle M. Scherer A D
+ Author Affiliations
- Author Affiliations

A Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, USA.

B Department of Biology, Hamilton College, Clinton, NY 13323, USA.

C Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA.

D Corresponding author. Email: michelle-scherer@uiowa.edu

Environmental Chemistry 12(1) 52-63 https://doi.org/10.1071/EN14035
Submitted: 15 February 2014  Accepted: 30 August 2014   Published: 5 December 2014

Environmental context. Concerns about carbon-driven climate change make it critical to better understand how carbon interacts with soils. We examined whether carbon compounds commonly found in soils affect the behaviour of soil iron minerals, and found that iron minerals remain dynamic and mix with the surrounding water, despite the presence of carbon in the water. Our findings suggest that both carbon and trace elements in the minerals may be more mobile and less stable than we previously thought.

Abstract. The close association of organic carbon and Fe oxides has been recognised for decades and recently interest in the role of Fe oxides in organic C sequestration has increased. Here we explore the effect of natural organic C on electron transfer and exchange of aqueous FeII and Fe in the bulk structure of goethite and magnetite. Using 57Fe isotope experiments coupled with 57Fe Mössbauer spectroscopy it is found that electron transfer occurs between aqueous FeII and structural FeIII in both goethite and magnetite in the presence of most organic C compounds, including natural organic matter (NOM), extracellular polysaccharides (EPS), and cell materials. Only a long-chain (39-C) phospholipid containing organic C significantly inhibited electron transfer. Despite evidence for FeII–FeIIIoxide electron transfer in the presence of NOM, exchange of Fe between the aqueous phase and bulk Fe was less than observed in the absence of NOM. Our findings suggest that electron transfer between aqueous FeII and bulk structural Fe in goethite and magnetite is a robust process likely to occur in a variety of organic-rich biogeochemical environments but that Fe exchange may be inhibited by the presence of some C compounds.


References

[1]  M. Schmidt, M. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. Jannsens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. Manning, P. Nannipieri, D. Rasse, S. Weiner, S. Trumbore, Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49.
Persistence of soil organic matter as an ecosystem property.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yltrnF&md5=3e76edf722107a92d084dea2f180e879CAS | 21979045PubMed |

[2]  R. T. Conant, R. A. Drijber, M. L. Haddix, W. J. Parton, E. A. Paul, A. F. Plante, J. Six, J. M. Steinweg, Sensitivity of organic matter decomposition to warming varies with its quality. Glob. Change Biol. 2008, 14, 868.
Sensitivity of organic matter decomposition to warming varies with its quality.Crossref | GoogleScholarGoogle Scholar |

[3]  H. Tiessen, J. W. B. Stewart, H. W. Hunt, Concepts of soil organic-matter transformations in relation to organo-mineral particle-size fractions. Plant Soil 1984, 76, 287.
Concepts of soil organic-matter transformations in relation to organo-mineral particle-size fractions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFSksb8%3D&md5=db48ee869d69cb71670e9da520953471CAS |

[4]  D. W. Anderson, The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry 1988, 5, 71.
The effect of parent material and soil development on nutrient cycling in temperate ecosystems.Crossref | GoogleScholarGoogle Scholar |

[5]  J. M. Oades, The retention of organic-matter in soils. Biogeochemistry 1988, 5, 35.
The retention of organic-matter in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVeksb0%3D&md5=ed4cc2f63363c75321cec30d2546d1c4CAS |

[6]  L. M. Mayer, Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol. 1994, 114, 347.
Relationships between mineral surfaces and organic carbon concentrations in soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFCiurk%3D&md5=f4a4b46f0d8f19cfe9528ef9f99b1a05CAS |

[7]  J. Hassink, The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77.
The capacity of soils to preserve organic C and N by their association with clay and silt particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVKju7g%3D&md5=b640fd2a2c405f02e7add6b6d8e64d9aCAS |

[8]  B. K. G. Theng, G. J. Churchman, R. H. Newman, The occurrence of interlayer clay-organic complexes in 2 New Zealand soils. Soil Sci. 1986, 142, 262.
The occurrence of interlayer clay-organic complexes in 2 New Zealand soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFelug%3D%3D&md5=e13fe532ea342ebe23f4461e3009a91bCAS |

[9]  K. Eusterhues, C. Rumpel, M. Kleber, I. Kogel-Knabner, Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org. Geochem. 2003, 34, 1591.
Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslOhtro%3D&md5=57e3aee544c450cb1180ce624f09f55dCAS |

[10]  M. Kleber, R. Mikutta, M. S. Torn, R. Jahn, Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur. J. Soil Sci. 2005, 56, 717.
| 1:CAS:528:DC%2BD28Xjs1Grug%3D%3D&md5=63fdf5b7efae5f87f5c66b6de4d9ee35CAS |

[11]  R. Mikutta, M. Kleber, M. S. Torn, R. Jahn, Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 2006, 77, 25.
Stabilization of soil organic matter: association with minerals or chemical recalcitrance?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFCkur0%3D&md5=376df6efd53d36e3afb39bd17e631549CAS |

[12]  R. Berner, Sedimentary pyrite formation. Am. J. Sci. 1970, 268, 1.
Sedimentary pyrite formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXksFyqtQ%3D%3D&md5=150a5a2b6077c5dc198fc077fd138107CAS |

[13]  U. Schwertmann, F. Wagner, H. Knicker, Ferrihydrite-humic associations: magnetic hyperfine interactions. Soil Sci. Soc. Am. J. 2005, 69, 1009.
Ferrihydrite-humic associations: magnetic hyperfine interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvV2lsb0%3D&md5=307f1e02646e2976450a0ae0a6d42d48CAS |

[14]  L. M. Mayer, Surface-area control of organic-carbon accumulation in continental-shelf sediments. Geochim. Cosmochim. Acta 1994, 58, 1271.
Surface-area control of organic-carbon accumulation in continental-shelf sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislGktbs%3D&md5=cad220270803b4e09af3a5e34c997b17CAS |

[15]  K. Kaiser, G. Guggenberger, The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem. 2000, 31, 711.
The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFSqu7o%3D&md5=0548c461c4dbe792e2590987b4397f84CAS |

[16]  E. Tipping, D. C. Higgins, The effect of adsorbed humic substances on the colloid stability of hematite particles. Colloids Surf. 1982, 5, 85.
The effect of adsorbed humic substances on the colloid stability of hematite particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVyktb8%3D&md5=861565ad72d40bb04f7daa6d3f1fd13fCAS |

[17]  M. R. Jekel, The stabilization of dispersed mineral particles by adsorption of humic substances. Water Res. 1986, 20, 1543.
The stabilization of dispersed mineral particles by adsorption of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXnt1Cmuw%3D%3D&md5=b7336c1e24261c34a5a4ceaa54bcdd10CAS |

[18]  R. J. Gibbs, Effect of natural organic coatings on the coagulation of particles. Environ. Sci. Technol. 1983, 17, 237.
Effect of natural organic coatings on the coagulation of particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtFeht7Y%3D&md5=89f643298515447f38ad16ea5f34ce5eCAS | 22304641PubMed |

[19]  D. Heil, G. Sposito, Organic-matter role in illitic soil colloids flocculation. 1. Counter ions and pH. Soil Sci. Soc. Am. J. 1993, 57, 1241.
Organic-matter role in illitic soil colloids flocculation. 1. Counter ions and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis12jsL8%3D&md5=90d71d58d21bd55eafa19ed9b144a53bCAS |

[20]  R. Kretzschmar, W. P. Robarge, S. B. Weed, Flocculation of kaolinitic soil clays – effects of humic substances and iron-oxides. Soil Sci. Soc. Am. J. 1993, 57, 1277.
Flocculation of kaolinitic soil clays – effects of humic substances and iron-oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis12jsLo%3D&md5=4cfb9590af530db594b7a1cece3a736bCAS |

[21]  C. L. Tiller, C. R. Omelia, Natural organic-matter and colloidal stability – models and measurements. Colloid Surf. A 1993, 73, 89.
Natural organic-matter and colloidal stability – models and measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslyisL4%3D&md5=ab731b54f5704c43a026df18318e9bfcCAS |

[22]  R. Kretzschmar, W. P. Robarge, A. Amoozegar, Influence of natural organic-matter on colloid transport through saprolite. Water Resour. Res. 1995, 31, 435.
Influence of natural organic-matter on colloid transport through saprolite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVGjs7w%3D&md5=209bbe7b3212b4c75bd7fdbff21ec6e6CAS |

[23]  J. F. McCarthy, J. M. Zachara, Subsurface transport of contaminants. Environ. Sci. Technol. 1989, 23, 496.
| 1:CAS:528:DyaL1MXitlKktLs%3D&md5=1b0ec2d62ecd1a5c77929c5ca1bd2b51CAS |

[24]  E. M. Murphy, J. M. Zachara, S. C. Smith, J. L. Phillips, T. W. Wietsma, Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ. Sci. Technol. 1994, 28, 1291.
Interaction of hydrophobic organic compounds with mineral-bound humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVyitL0%3D&md5=149dccef90184540dd6f696058313d24CAS | 22176321PubMed |

[25]  E. Illés, E. Tombácz, The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 2006, 295, 115.
The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles.Crossref | GoogleScholarGoogle Scholar | 16139290PubMed |

[26]  G. R. Aiken, H. Hsu-Kim, J. N. Ryan, Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Technol. 2011, 45, 3196.
Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqt7k%3D&md5=de396dfefe7250d37ef8a5ca6dc6144eCAS | 21405118PubMed |

[27]  S. Y. A. Lee, A. G. Fane, T. D. Waite, Impact of natural organic matter on floc size and structure effects in membrane filtration. Environ. Sci. Technol. 2005, 39, 6477.
Impact of natural organic matter on floc size and structure effects in membrane filtration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVersLo%3D&md5=a01938c3068a2d695f24e400c352b9feCAS |

[28]  T. Karlsson, P. Persson, Complexes with aquatic organic matter suppress hydrolysis and precipitation of Fe(III). Chem. Geol. 2012, 322–323, 19.
Complexes with aquatic organic matter suppress hydrolysis and precipitation of Fe(III).Crossref | GoogleScholarGoogle Scholar |

[29]  M. Pédrot, A. Le Boudec, M. Davranche, A. Dia, O. Henin, How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction? J. Colloid Interface Sci. 2011, 359, 75.
How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?Crossref | GoogleScholarGoogle Scholar | 21482426PubMed |

[30]  A. Cismasu, F. Michel, A. Tcaciuk, T. Tyliszczak, G. Brown, Composition and structural aspects of naturally occurring ferrihydrite. C. R. Geosci. 2011, 343, 210.
Composition and structural aspects of naturally occurring ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFKhsb4%3D&md5=0763b249a6e14e6309f452c84f6a682bCAS |

[31]  K. Eusterhues, F. E. Wagner, W. Haeusler, M. Hanzlik, H. Knicker, K. U. Totsche, I. Koegel-Knabner, U. Schwertmann, Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy. Environ. Sci. Technol. 2008, 42, 7891.
Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Wjsr7F&md5=6faa81b774908f0b9ac0798951874937CAS | 19031877PubMed |

[32]  C. Mikutta, R. Mikutta, S. Bonneville, F. Wagner, A. Voegelin, I. Christl, R. Kretzschmar, Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I. Characterization. Geochim. Cosmochim. Acta 2008, 72, 1111.
Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I. Characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Ont7g%3D&md5=34b0e922cb1bdd640c26d62d1a60ee9aCAS |

[33]  Y. Henneberry, T. Kraus, Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Org. Geochem. 2012, 48, 81.
Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Cisrc%3D&md5=f8e501355a1aad8dd82415fcc9fccb01CAS |

[34]  A. M. Jones, R. N. Collins, J. Rose, T. D. Waite, The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochim. Cosmochim. Acta 2009, 73, 4409.
The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKksLc%3D&md5=28d9110bc280178ff07d0d41dfb52fdbCAS |

[35]  R. M. Handler, B. L. Beard, C. M. Johnson, M. M. Scherer, Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Environ. Sci. Technol. 2009, 43, 1102.
Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsl2iug%3D%3D&md5=7fd2b841a1e8dbc8708a0184f35b5b95CAS | 19320165PubMed |

[36]  S. V. Yanina, K. M. Rosso, Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 2008, 320, 218.
Linked reactivity at mineral-water interfaces through bulk crystal conduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlGjtLw%3D&md5=9a39cb1ee1224026ff0391b18b144707CAS | 18323417PubMed |

[37]  C. M. Hansel, S. G. Benner, S. Fendorf, Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ. Sci. Technol. 2005, 39, 7147.
Competing Fe(II)-induced mineralization pathways of ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotFSit7w%3D&md5=ac36b0552776c9431c591af5574d54f1CAS | 16201641PubMed |

[38]  H. D. Pedersen, D. Postma, R. Jakobsen, O. Larsen, Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim. Cosmochim. Acta 2005, 69, 3967.
Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1Wrtr4%3D&md5=bc72def991036bba6dcaf3e6df823278CAS |

[39]  L. Yang, C. I. Steefel, M. A. Marcus, J. R. Bargar, Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions. Environ. Sci. Technol. 2010, 44, 5469.
Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGls74%3D&md5=15200ac48f99222174d7c35a81f1b992CAS | 20553044PubMed |

[40]  A. G. B. Williams, M. M. Scherer, Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide-water interface. Environ. Sci. Technol. 2004, 38, 4782.
Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide-water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Oltrc%3D&md5=ecb93e1950c66be8e7790521459dbd52CAS |

[41]  P. Larese-Casanova, M. M. Scherer, Fe(II) sorption on hematite: new insights based on spectroscopic measurements. Environ. Sci. Technol. 2007, 41, 471.
Fe(II) sorption on hematite: new insights based on spectroscopic measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yrtrfO&md5=7b10edc1ebdd0a457fa09c30ccc8fc99CAS | 17310709PubMed |

[42]  C. A. Gorski, R. M. Handler, B. L. Beard, T. Pasakarnis, C. M. Johnson, M. M. Scherer, Fe atom exchange between aqueous Fe2+ and magnetite. Environ. Sci. Technol. 2012, 46, 12399.
Fe atom exchange between aqueous Fe2+ and magnetite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVOku7w%3D&md5=f0de3e7ed87702dda4b0784fe29da935CAS | 22577839PubMed |

[43]  D. Latta, J. Bachman, M. Scherer, Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption. Environ. Sci. Technol. 2012, 46, 10614.
Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlags7%2FP&md5=db8aa86c3fe1b3535889aec7847d8600CAS | 22963051PubMed |

[44]  V. Tishchenko, C. Meile, M. Scherer, T. Pasakarnis, A. Thompson, Fe2+ catalyzed iron atom exchange and re-crystallization in a tropical soil. Geochim. Cosmochim. Acta
Fe2+ catalyzed iron atom exchange and re-crystallization in a tropical soil.Crossref | GoogleScholarGoogle Scholar |

[45]  H. Tamura, K. Goto, T. Yotsuyan, M. Nagayama, Spectrophotometric determination of iron(II) with 1,10-phenanthroline in presence of large amounts of iron(III). Talanta 1974, 21, 314.
Spectrophotometric determination of iron(II) with 1,10-phenanthroline in presence of large amounts of iron(III).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXksVCqsbY%3D&md5=e3576fc4bd15486c2610f23243913818CAS | 18961462PubMed |

[46]  D. M. Cwiertny, R. M. Handler, M. V. Schaefer, V. H. Grassian, M. M. Scherer, Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: reaction of Fe(II) with goethite. Geochim. Cosmochim. Acta 2008, 72, 1365.
Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: reaction of Fe(II) with goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Wgu7Y%3D&md5=e723cb8b56c7548c40bddb2f74b61aa5CAS |

[47]  C. A. Gorski, M. M. Scherer, Influence of magnetite stoichiometry on Fe(II) uptake and nitrobenzene reduction. Environ. Sci. Technol. 2009, 43, 3675.
Influence of magnetite stoichiometry on Fe(II) uptake and nitrobenzene reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlGjs7s%3D&md5=93dc87cd24ff240c45ff72a6d9370b4bCAS | 19544872PubMed |

[48]  R. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd edn. 2003 (Wiley-VCH: Weinheim, Germany).

[49]  A. M. Hirt, L. Lanci, J. Dobson, P. Weidler, A. U. Gehring, Low-temperature magnetic properties of lepidocrocite. J. Geophys. Res. Solid Earth 2002, 107, 2011.
Low-temperature magnetic properties of lepidocrocite.Crossref | GoogleScholarGoogle Scholar |

[50]  E. Murad, J. H. Johnston, Iron oxides and oxyhydroxides, in Mossbauer Spectroscopy Applied to Inorganic Chemistry (Ed. G. J. Long) 1987, pp. 507–582 (Plenum Publishers: New York).

[51]  A. Thompson, D. G. Rancourt, O. A. Chadwick, J. Chorover, Iron solid-phase differentiation along a redox gradient in basaltic soils. Geochim. Cosmochim. Acta 2011, 75, 119.
Iron solid-phase differentiation along a redox gradient in basaltic soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOnur%2FM&md5=d6b435cc699e2a6252f400c487e4ac5eCAS |

[52]  R. K. Kukkadapu, J. M. Zachara, S. C. Smith, J. K. Fredrickson, C. X. Liu, Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments. Geochim. Cosmochim. Acta 2001, 65, 2913.
Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVOlsrs%3D&md5=0c286e57a5fed3abbe2cd7c5e326dad1CAS |

[53]  R. E. Vandenberghe, C. A. Barrero, G. M. da Costa, E. Van San, E. De Grave, Mossbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Interact. 2000, 126, 247.
Mossbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1OnsLk%3D&md5=36a3f2ac820d518e3c7862d2c9b4b329CAS |

[54]  J. B. Forsyth, I. G. Hedley, C. E. Johnson, The magnetic structure and hyperfine field of goethite (α-FeOOH). J. Phys. Chem. C 1968, 1, 179.

[55]  S. Morup, J. A. Dumesic, H. Topsoe, Magnetic microcrystals, in Applications of Mossbauer Spectroscopy (Ed. R. L. Cohen) 1980, pp. 1–48 (Academic Press: New York).

[56]  K. Amstaetter, T. Borch, P. Larese-Casanova, A. Kappler, Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 2010, 44, 102.
Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artbrI&md5=094665af2b901d73dd8f585e995a4fabCAS | 20039739PubMed |

[57]  C. Hohmann, G. Morin, G. Ona-Nguema, J.-M. Guigner, G. Brown, A. Kappler, Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Geochim. Cosmochim. Acta 2011, 75, 4699.
Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWjsrrP&md5=20d2ee8a8b0666d9b040fb7c9566162cCAS |

[58]  A. Géhin, J. M. Grenèche, C. Tournassat, J. Brendlé, D. G. Rancourt, L. Charlet, Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral. Geochim. Cosmochim. Acta 2007, 71, 863.
Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral.Crossref | GoogleScholarGoogle Scholar |

[59]  P. Larese-Casanova, D. M. Cwiertny, M. M. Scherer, Nanogoethite formation from oxidation of Fe(II) sorbed on aluminum oxide: implications for contaminant reduction. Environ. Sci. Technol. 2010, 44, 3765.
Nanogoethite formation from oxidation of Fe(II) sorbed on aluminum oxide: implications for contaminant reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVWmsL4%3D&md5=c521fa5ea8e5b8cc640dd0afe96610efCAS | 20408543PubMed |

[60]  C. Gorski, Redox Behavior of Magnetite in the Environment: Moving Towards a Semiconductor Model 2009 (University of Iowa: Iowa City, IA).

[61]  C. A. Gorski, M. M. Scherer, Fe2+ sorption at the Fe oxide-water interface: a revised conceptual framework, in Aquatic Redox Chemistry (Eds P. G. Tratnyek, T. J. Grundl, S. B. Haderlein) 2011, pp. 325–353(Oxford University Press: Washington DC).

[62]  R. Handler, A. Frierdich, C. Johnson, K. Rosso, B. Beard, C. Wang, D. Latta, A. Neumann, T. Pasakarnis, W. Premaratne, M. Scherer, Fe(II)-catalyzed recrystallization of goethite revisited. Environ. Sci. Technol. 2014, 48, 11302.
Fe(II)-catalyzed recrystallization of goethite revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyrsb7I&md5=8ccac78857f0bef1d1a05795714186aeCAS | 25248028PubMed |

[63]  E. J. O'Loughlin, C. A. Gorski, M. M. Scherer, M. I. Boyanov, K. M. Kemner, Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products. Environ. Sci. Technol. 2010, 44, 4570.
Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFWju7c%3D&md5=7d851f2b067e51770c79c62d0978336fCAS | 20476735PubMed |

[64]  T. Borch, Y. Masue, R. K. Kukkadapu, S. Fendorf, Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environ. Sci. Technol. 2007, 41, 166.
Phosphate imposed limitations on biological reduction and alteration of ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit7jF&md5=dd278d5f98a3a92c098186d98d028d56CAS | 17265943PubMed |

[65]  P. Larese-Casanova, M. M. Scherer, Morin transition suppression in polycrystalline 57hematite (α-Fe2O3) exposed to 56Fe(II). Hyperfine Interact. 2007, 174, 111.
Morin transition suppression in polycrystalline 57hematite (α-Fe2O3) exposed to 56Fe(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFynsbs%3D&md5=c7f93ffc0ec565c99619dae9ac613219CAS |

[66]  D. P. Jaisi, H. L. Dong, C. X. Liu, Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochim. Cosmochim. Acta 2007, 71, 1145.
Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFSgtrY%3D&md5=8f7a899ca395fe62b4b564a4b84dd399CAS |

[67]  E. E. Roden, M. M. Urrutia, Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiol. J. 2002, 19, 209.
Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslGrtr4%3D&md5=597f34f4e1044f7f8d3eb4dddac9ca3cCAS |

[68]  P. Dominik, M. Kaupenjohann, Reduction of Fe(III) (hydr)oxides with known thermodynamic stability by Geobacter metallireducens. Geomicrobiol. J. 2004, 21, 287.
Reduction of Fe(III) (hydr)oxides with known thermodynamic stability by Geobacter metallireducens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVCqtbY%3D&md5=52fbef5ada22c8d6daeb0e95bb75587eCAS |

[69]  R. A. Royer, W. D. Burgos, A. S. Fisher, R. F. Unz, B. A. Dempsey, Enhancement of biological hematite reduction by electron shuttling and Fe(II) complexation. Environ. Sci. Technol. 2002, 36, 1939.
Enhancement of biological hematite reduction by electron shuttling and Fe(II) complexation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhsl2ntrw%3D&md5=59d664d6c365794a9ef9d2fdd1b2b09cCAS | 12026974PubMed |

[70]  R. A. Royer, B. A. Dempsey, B. H. Jeon, W. D. Burgos, Inhibition of biological reductive dissolution of hematite by ferrous iron. Environ. Sci. Technol. 2004, 38, 187.
Inhibition of biological reductive dissolution of hematite by ferrous iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1ajsLs%3D&md5=b647d473f03019bd7b018734e942bbacCAS | 14740735PubMed |

[71]  C. M. Hansel, S. G. Benner, P. Nico, S. Fendorf, Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). Geochim. Cosmochim. Acta 2004, 68, 3217.
Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFamtLc%3D&md5=1b669a13b36fef1648b06c3df4ae0c93CAS |