Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Arsenic cycling in freshwater phytoplankton and zooplankton cultures

G. Caumette A , I. Koch A , K. House A and K. J. Reimer A B
+ Author Affiliations
- Author Affiliations

A Environmental Sciences Group, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, K7K 7B4, Canada.

B Corresponding author. Email: reimer-k@rmc.ca

Environmental Chemistry 11(5) 496-505 https://doi.org/10.1071/EN14039
Submitted: 19 February 2014  Accepted: 23 July 2014   Published: 1 October 2014

Environmental context. Understanding how arsenic is changed from toxic to non-toxic chemical forms in lakes and rivers is important in understanding the overall risk from arsenic. Freshwater plankton exposed in laboratory cultures to different sources of toxic inorganic arsenate formed arsenosugars, but at higher exposure levels, in water and through contaminated sediment, inorganic arsenate remained unchanged. In arsenic-contaminated freshwater bodies, plankton may provide a source of toxic inorganic arsenic to consumers.

Abstract. Freshwater phytoplankton (Chlamydomonas) and zooplankton (Daphnia pulex) were exposed to arsenic to trace the arsenic transformations and the formation of organoarsenic compounds at the base of the freshwater food chain. Plankton were cultured in artificial lake water, and exposed to arsenic through several pathways, hypothesised to be the main exposure sources: through water, food and contaminated sediments. High performance liquid chromatography–inductively coupled plasma–mass spectrometry and X-ray absorption spectroscopy were used to determine arsenic speciation in the studied organisms, and X-ray fluorescence mapping was used to locate the arsenic in a single Daphnia specimen. The results show that the formation of methylated arsenic compounds and arsenosugars by the zooplankton organisms was independent of the exposure route, but instead dependent on arsenic concentration in the environment. Specifically, organoarsenic compounds were dominant in extracts of Daphnia organisms exposed to low arsenic concentrations through water at 10 µg L–1 (67 %), and through contaminated food (75 %), but inorganic arsenic was dominant in Daphnia exposed to high arsenic concentrations, including contaminated sediments. Phytoplankton cultures contained variable amounts of arsenosugars, but on average the dominant compound in phytoplankton was inorganic arsenic. The main implications of the present study for understanding arsenic cycling in the freshwater plankton community are that arsenosugars are formed at possibly both the phytoplankton and zooplankton trophic levels; and that higher arsenic loads in plankton correspond to higher inorganic arsenic concentrations, which could indicate a saturation of the arsenic methylation process by plankton organisms.


References

[1]  B. P. Jackson, V. F. Taylor, M. R. Karagas, T. Punshon, K. L. Cottingham, Arsenic, organic foods, and brown rice syrup. Environ. Health Perspect. 2012, 120, 623.
Arsenic, organic foods, and brown rice syrup.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptlyktro%3D&md5=e6780dcabdc29a9593d49aeab840a066CAS | 22336149PubMed |

[2]  B. P. Jackson, V. F. Taylor, T. Punshon, K. L. Cottingham, Arsenic concentration and speciation in infant formulas and first foods. Pure Appl. Chem. 2012, 84, 215.
Arsenic concentration and speciation in infant formulas and first foods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1aqtL0%3D&md5=25292d088b58278194bc1933b4630befCAS | 22701232PubMed |

[3]  K. J. Reimer, I. Koch, W. R. Cullen, Organoarsenicals: distribution and transformation in the environment, in Metal Ions in Life Sciences, Volume 7, Organometallics in Environment and Toxicology (Eds A. Sigel, H. Sigel, R. K. O. Sigel) 2010, pp. 165–229 (Royal Society of Chemistry: Cambridge, UK).

[4]  K. J. Whaley-Martin, I. Koch, K. J. Reimer, Determination of arsenic species in edible periwinkles (Littorina littorea) by HPLC–ICPMS and XAS along a contamination gradient. Sci. Total Environ. 2013, 456–457, 148.
Determination of arsenic species in edible periwinkles (Littorina littorea) by HPLC–ICPMS and XAS along a contamination gradient.Crossref | GoogleScholarGoogle Scholar | 23588137PubMed |

[5]  K. J. Whaley-Martin, I. Koch, M. Moriarty, K. J. Reimer, Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environ. Sci. Technol. 2012, 46, 3110.
Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitF2mtrw%3D&md5=3ad1cd73485c2a0ac1decd3295a08df4CAS | 22329691PubMed |

[6]  V. W. Lai, K. Kanaki, S. A. Pergantis, W. R. Cullen, K. J. Reimer, Arsenic speciation in freshwater snails and its life cycle variation. J. Environ. Monit. 2012, 14, 743.
Arsenic speciation in freshwater snails and its life cycle variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFOks7c%3D&md5=761913996cc841d3697df9ed9ac96e9eCAS | 22193982PubMed |

[7]  G. Caumette, I. Koch, E. Estrada, K. J. Reimer, Arsenic speciation in plankton organisms from contaminated lakes: transformations at the base of the freshwater food chain. Environ. Sci. Technol. 2011, 45, 9917.
Arsenic speciation in plankton organisms from contaminated lakes: transformations at the base of the freshwater food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGjt7rM&md5=2b8a195fb0814f50133af27916e74c1eCAS | 22017302PubMed |

[8]  G. Caumette, I. Koch, M. Moriarty, K. J. Reimer, Arsenic distribution and speciation in Daphnia pulex. Sci. Total Environ. 2012, 432, 243.
Arsenic distribution and speciation in Daphnia pulex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCmsbvK&md5=4dc5623d5e8f3455fb1631c44867bce4CAS | 22750169PubMed |

[9]  G. Caumette, I. Koch, K. J. Reimer, Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J. Environ. Monit. 2012, 14, 2841.
Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOltLvF&md5=234e4d53e8f4e6276ec3d1d5db63d006CAS | 23014956PubMed |

[10]  K. Shiomi, Y. Sugiyama, K. Shimakura, Y. Nagashima, Arsenobetaine as the major arsenic compound in the muscle of two species of freshwater fish. Appl. Organomet. Chem. 1995, 9, 105.
Arsenobetaine as the major arsenic compound in the muscle of two species of freshwater fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVKqtLc%3D&md5=75b3fa35716077abbcce134e97c66eaaCAS |

[11]  Z. Šlejkovec, Z. Bajc, D. Z. Doganoc, Arsenic speciation patterns in freshwater fish. Talanta 2004, 62, 931.
Arsenic speciation patterns in freshwater fish.Crossref | GoogleScholarGoogle Scholar | 18969382PubMed |

[12]  C. Soeroes, W. Goessler, K. A. Francesconi, N. Kienzl, R. Schaeffer, P. Fodor, D. Kuehnelt, Arsenic speciation in farmed Hungarian freshwater fish. J. Agric. Food Chem. 2005, 53, 9238.
Arsenic speciation in farmed Hungarian freshwater fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSksr%2FP&md5=b90505aa0ad39ad0fd42bbc5be42d85fCAS | 16277428PubMed |

[13]  S. Ciardullo, F. Aureli, A. Raggi, F. Cubadda, Arsenic speciation in freshwater fish: focus on extraction and mass balance. Talanta 2010, 81, 213.
Arsenic speciation in freshwater fish: focus on extraction and mass balance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisF2ju7Y%3D&md5=a1cdcac957238d996b73caa803bdf942CAS | 20188911PubMed |

[14]  G. Williams, J. M. West, I. Koch, K. J. Reimer, E. T. Snow, Arsenic speciation in the freshwater crayfish, Cherax destructor Clark. Sci. Total Environ. 2009, 407, 2650.
Arsenic speciation in the freshwater crayfish, Cherax destructor Clark.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVegs7s%3D&md5=370f53e009c5b131c8a80bd8a373781bCAS | 19223061PubMed |

[15]  C. Soeroes, W. Goessler, K. A. Francesconi, E. Schmeisser, R. Raml, N. Kienzl, M. Kahn, P. Fodora, D. Kuehnelt, Thio arsenosugars in freshwater mussels from the Danube in Hungary. J. Environ. Monit. 2005, 7, 688.
Thio arsenosugars in freshwater mussels from the Danube in Hungary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsF2htL0%3D&md5=cd9f25e0f43cfc33f0be851d91d122ddCAS | 15986048PubMed |

[16]  S. Miyashita, S. Fujiwara, M. Tsuzuki, T. Kaise, Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii. Biosci. Biotechnol. Biochem. 2011, 75, 522.
Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2lsL8%3D&md5=0a43e84cb7b1bbc4aaad93448d1e83efCAS | 21389618PubMed |

[17]  L. A. Murray, A. Raab, I. L. Marr, J. Feldmann, Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl. Organomet. Chem. 2003, 17, 669.
Biotransformation of arsenate to arsenosugars by Chlorella vulgaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFOrtL4%3D&md5=31a86bf4c3f1d252ed5150109fa509cdCAS |

[18]  J. L. Levy, J. L. Stauber, M. S. Adams, W. A. Maher, J. K. Kirby, D. F. Jolley, Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ. Toxicol. Chem. 2005, 24, 2630.
Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKqt7bP&md5=5c6181662c1574abb86e8ee6f03770cbCAS | 16268166PubMed |

[19]  A. Suhendrayatna, T. Ohki, S. Nakajima, Maeda, Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulating, transformation, and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes. Chemosphere 2002, 46, 319.
Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulating, transformation, and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1ahsLo%3D&md5=9a6f71c54719f97bd53f70a8824da5d5CAS |

[20]  T. Kaise, M. Ogura, T. Nozaki, K. Saitoh, T. Sakurai, C. Matsubara, C. Watanabe, K. Hanaoka, Biomethylation of arsenic in an arsenic-rich freshwater environment. Appl. Organomet. Chem. 1997, 11, 297.
Biomethylation of arsenic in an arsenic-rich freshwater environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12qsr0%3D&md5=89079abb39db4e0bccaf1d2c30e5ece7CAS |

[21]  J. Stein, Handbook of Phycological Methods. Culture Methods and Growth Measurments 0000, pp. 448–459 (Cambridge University Press: Cambridge, UK).

[22]  S. S. Kilham, D. A. Kreeger, S. G. Lynn, C. E. Goulden, L. Herrera, COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 1998, 377, 147.
COMBO: a defined freshwater culture medium for algae and zooplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVShtL0%3D&md5=0a476eeb25401861ad62913f45a829e5CAS |

[23]  A. Samel, M. Ziegenfuss, C. E. Goulden, S. Banks, K. N. Baer, Culturing and bioassay testing of Daphnia magna using Elendt M4, Elendt M7, and COMBO media. Ecotoxicol. Environ. Saf. 1999, 43, 103.
Culturing and bioassay testing of Daphnia magna using Elendt M4, Elendt M7, and COMBO media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVKktbo%3D&md5=0737140e4618273b5dc506f74997b37fCAS | 10330328PubMed |

[24]  N. Kim, N. D. Yan, Methods for rearing the invasive zooplankter Bythotrephes in the laboratory. Limnol. Oceanogr. 2010, 8, 552.
Methods for rearing the invasive zooplankter Bythotrephes in the laboratory.Crossref | GoogleScholarGoogle Scholar |

[25]  E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Mar. Chem. 2013, 157, 78.
The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWksbzI&md5=9135bd122ffb8f06c76d25279a4c9724CAS |

[26]  M. L. Ostrofsky, F. H. Rigler, Chlorophyll-phosphorus relationships for subarctic lakes in Western Canada. Can. J. Fish. Aquat. Sci. 1987, 44, 775.
Chlorophyll-phosphorus relationships for subarctic lakes in Western Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsVSlsbo%3D&md5=9610809640c061ce0ef46417c41fbc08CAS |

[27]  P. G. Smith, I. Koch, R. A. Gordon, D. F. Mandoli, B. D. Chapman, K. J. Reimer, X-Ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples. Environ. Sci. Technol. 2005, 39, 248.
X-Ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVGgsrk%3D&md5=83e8a849e3545acc8fc3fb7ded6b8ce6CAS | 15667101PubMed |

[28]  B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=38393bb2fbbd8e2e2db909c600fda025CAS | 15968136PubMed |

[29]  L. Meunier, J. Wragg, I. Koch, K. J. Reimer, Method variables affecting the bioaccessibility of arsenic in soil. J. Environ. Sci. Health. A 2010, 45, 517.
| 1:CAS:528:DC%2BC3cXks1Wiu70%3D&md5=443e7798e4b159c1eeed23508386105bCAS |