Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW

Addressing the Anthropocene

A. D. Anbar A B E , S. J. Romaniello A , B. R. Allenby C and W. S. Broecker D
+ Author Affiliations
- Author Affiliations

A School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.

B School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.

C School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA.

D Lamont-Doherty Earth Observatory, Palisades, NY 10964, USA.

E Corresponding author. Email: anbar@asu.edu




Ariel D. Anbar is a scientist and educator interested in Earth’s past and future evolution as an inhabited world, and the prospects for life beyond. Trained as a geologist and a chemist, Anbar is a President’s Professor at Arizona State University, where he is on the faculty of the School of Earth & Space Exploration and the School of Molecular Sciences, and a Distinguished Sustainability Scholar in the Global Institute of Sustainability. The author or co-author of over 100 refereed papers, Anbar directed ASU’s NASA-funded Astrobiology Program from 2009 to 2015. He now oversees the PlanetWorks initiative dedicated to understanding and preserving Earth’s habitability in the Anthropocene. He is a graduate of Harvard (A.B. 1989) and Caltech (Ph.D. 1996). Anbar is a Fellow of the Geological Society of America, which awarded him the Donath Medal in 2002. He was recognised as an HHMI Professor in 2014, and elected a Fellow of the Geochemical Society and the European Association of Geochemistry in 2015.



Stephen Romaniello is a research scientist at Arizona State University. He completed his B.A. and M.Sc. at Cornell University followed by his Ph.D. at Arizona State University. His interests include biogeochemistry, isotope geochemistry, cosmochemistry and climate issues. He currently manages the W.M. Keck Laboratory for Environmental Biogeochemistry and the Isotope Cosmochemistry and Geochronology Laboratory at Arizona State University, overseeing a large group of Ph.D. students and post-docs. He is currently serving as lead research scientist for Arizona State University's PlanetWorks Initiative, which focuses on transformative solutions to large-scale environmental and climate challenges.



Braden R. Allenby is Lincoln Professor of Engineering and Ethics; President’s Professor of Civil, Environmental, and Sustainable Engineering, and of Law; Founding Chair of the Consortium for Emerging Technologies, Military Operations, and National Security; and Founding Director of the Center for Earth Systems Engineering and Management, at Arizona State University. Dr Allenby received his B.A. from Yale University, his J.D. and M.A. (economics) from the University of Virginia, and his M.Ss. and Ph.D. in Environmental Sciences from Rutgers University. He is past President of the International Society for Industrial Ecology and an AAAS Fellow and a Fellow of the Royal Society for the Arts, Manufactures & Commerce. His areas of expertise include emerging technologies, especially in the military and security domains, Design for Environment, industrial ecology, telework and net-centric organisations, transhumanism, and earth systems engineering and management. In 2008 he was selected by the Carnegie Foundation as 2008 Arizona Professor of the Year.



Wallace S. Broecker received his Ph.D. from Columbia University in 1958 and is presently the Newberry Professor at Columbia University’s Lamont-Doherty Earth Observatory. His research is directed toward the role of the oceans in climate change, and he developed the idea of a global ‘conveyor belt’ linking the circulation of the global ocean. Over the course of his scientific career Wally has made major contributions to the science of the carbon cycle and the use of chemical tracers and isotope dating in oceanography. Prof. Broecker received the Vetlesen Prize (Lamont–Doherty Earth Observatory and the G. Unger Vetlesen Foundation) in 1987 and the Crafoord Prize (Royal Swedish Academy of Sciences) in 2006 for his research into the global carbon cycle.

Environmental Chemistry 13(5) 777-783 https://doi.org/10.1071/EN15115
Submitted: 2 June 2015  Accepted: 10 March 2016   Published: 1 June 2016

Environmental context. We are entering an epoch – the Anthropocene – in which human activity is changing the face of the planet. To stabilise climate, we may consider deliberate intervention into Earth’s systems, on a global scale. Responsible stewardship requires that we develop a safe, economic and environmentally acceptable means of sequestering CO2 from the atmosphere.

Abstract. The Anthropocene is an evolutionary transition to an epoch in which human activity has become one of the most important Earth systems. To successfully navigate this transition, we must develop a fully integrated environmental science that anticipates the responses of the human system alongside other Earth systems. Applying this perspective to climate change, the signature global environmental challenge in the early part of the Anthropocene, we analyse the ongoing failures of climate policy and the prospects for serious investment in technologies to remove CO2 from the atmosphere.


References

[1]  P. J. Crutzen, Geology of mankind. Nature 2002, 415, 23.
Geology of mankind.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1Gksg%3D%3D&md5=6156677dbbf8fb8ee8439a96c2bffb38CAS | 11780095PubMed |

[2]  W. Steffen, P. J. Crutzen, J. R. McNeill, The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 2007, 36, 614.
The Anthropocene: are humans now overwhelming the great forces of nature?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFSqsrs%3D&md5=0b789ca16aa1164fac871db8aec63bc5CAS | 18240674PubMed |

[3]  J. Zalasiewicz, M. Williams, A. Haywood, M. Ellis, The Anthropocene: a new epoch of geological time? Phil. Trans. R. Soc. A 2011, 369, 835.
The Anthropocene: a new epoch of geological time?Crossref | GoogleScholarGoogle Scholar | 21282149PubMed |

[4]  W. Steffen, J. Grinevald, P. Crutzen, J. McNeill, The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. A 2011, 369, 842.
The Anthropocene: conceptual and historical perspectives.Crossref | GoogleScholarGoogle Scholar | 21282150PubMed |

[5]  O. Kellie-Smith, P. M. Cox, Emergent dynamics of the climate–economy system in the Anthropocene. Phil. Trans. R. Soc. A 2011, 369, 868.
Emergent dynamics of the climate–economy system in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 21282151PubMed |

[6]  T. Tyrrell, Anthropogenic modification of the oceans. Phil. Trans. R. Soc. A 2011, 369, 887.
Anthropogenic modification of the oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Kgsbw%3D&md5=998153b8589d86331810c664381c279cCAS | 21282152PubMed |

[7]  D. Vidas, The Anthropocene and the international law of the sea. Phil. Trans. R. Soc. A 2011, 369, 909.
The Anthropocene and the international law of the sea.Crossref | GoogleScholarGoogle Scholar | 21282153PubMed |

[8]  C. Tickell, Societal responses to the Anthropocene. Phil. Trans. R. Soc. A 2011, 369, 926.
Societal responses to the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 21282154PubMed |

[9]  A. M. Haywood, A. Ridgwell, D. J. Lunt, D. J. Hill, M. J. Pound, H. J. Dowsett, A. M. Dolan, J. E. Francis, M. Williams, Are there pre-Quaternary geological analogues for a future greenhouse warming? Phil. Trans. R. Soc. A 2011, 369, 933.
Are there pre-Quaternary geological analogues for a future greenhouse warming?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Kgsb0%3D&md5=dc71fe1aeac7228e4ea9a7dc92436333CAS | 21282155PubMed |

[10]  J. P. M. Syvitski, A. Kettner, Sediment flux and the Anthropocene. Phil. Trans. R. Soc. A 2011, 369, 957.
Sediment flux and the Anthropocene.Crossref | GoogleScholarGoogle Scholar |

[11]  D. Merritts, R. Walter, M. Rahnis, J. Hartranft, S. Cox, A. Gellis, N. Potter, W. Hilgartner, M. Langland, L. Manion, C. Lippincott, S. Siddiqui, Z. Rehman, C. Scheid, L. Kratz, A. Shilling, M. Jenschke, K. Datin, E. Cranmer, A. Reed, D. Matuszewski, M. Voli, E. Ohlson, A. Neugebauer, A. Ahamed, C. Neal, A. Winter, S. Becker, Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic region, USA. Phil. Trans. R. Soc. A 2011, 369, 976.
Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic region, USA.Crossref | GoogleScholarGoogle Scholar | 21282157PubMed |

[12]  E. C. Ellis, Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 2011, 369, 1010.
Anthropogenic transformation of the terrestrial biosphere.Crossref | GoogleScholarGoogle Scholar | 21282158PubMed |

[13]  J. Zalasiewicz, M. Williams, R. Fortey, A. Smith, T. L. Barry, A. L. Coe, P. R. Bown, P. F. Rawson, A. Gale, P. Gibbard, F. J. Gregory, M. W. Hounslow, A. C. Kerr, P. Pearson, R. Knox, J. Powell, C. Waters, J. Marshall, M. Oates, P. Stone, Stratigraphy of the Anthropocene. Phil. Trans. R. Soc. A 2011, 369, 1036.
Stratigraphy of the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Kgsbo%3D&md5=69d2d992f356c0bf264d25238fcd4884CAS | 21282159PubMed |

[14]  S. J. Price, J. R. Ford, A. H. Cooper, C. Neal, Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain. Phil. Trans. R. Soc. A 2011, 369, 1056.
Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain.Crossref | GoogleScholarGoogle Scholar | 21282160PubMed |

[15]  C. H. Vane, S. R. Chenery, I. Harrison, A. W. Kim, V. Moss-Hayes, D. G. Jones, Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, 207/206Pb, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records. Phil. Trans. R. Soc. A 2011, 369, 1085.
Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, 207/206Pb, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Kgsbs%3D&md5=046bc79b25d142589c26b8c61a0bf5c3CAS | 21282161PubMed |

[16]  M. Williams, J. Zalasiewicz, P. K. Haff, C. Scwägerl, A. D. Barnosky, E. C. Ellis, The Anthropocene biosphere. Anthropocene Rev. 2015, 2, 196.
The Anthropocene biosphere.Crossref | GoogleScholarGoogle Scholar |

[17]  A. D. Anbar, Y. Duan, T. W. Lyons, G. L. Arnold, B. Kendall, R. A. Creaser, A. J. Kaufman, G. W. Gordon, C. Scott, J. Garvin, R. Buick, A whiff of oxygen before the great oxidation event? Science 2007, 317, 1903.
A whiff of oxygen before the great oxidation event?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOlt73O&md5=a20b327976eb22b3362cb2d9ade6d7f5CAS | 17901330PubMed |

[18]  T. W. Lyons, C. T. Reinhard, N. J. Planavsky, The rise of oxygen in Earth’s early ocean and atmosphere. Nature 2014, 506, 307.
The rise of oxygen in Earth’s early ocean and atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVels78%3D&md5=3b72e7ad4dd1ee3b73980773d88238f3CAS | 24553238PubMed |

[19]  E. A. Petigura, A. W. Howard, G. W. Marcy, Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl. Acad. Sci. USA 2013, 110, 19273.
Prevalence of Earth-size planets orbiting Sun-like stars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemtbnO&md5=9461fb6362c5da6942b462e9fa027683CAS | 24191033PubMed |

[20]  W. Steffen, Å. Persson, L. Deutsch, J. Zalasiewicz, M. Williams, K. Richardson, C. Crumley, P. Crutzen, C. Folke, L. Gordon, M. Molina, The Anthropocene: From global change to planetary stewardship. Ambio 2011, 40, 739.
The Anthropocene: From global change to planetary stewardship.Crossref | GoogleScholarGoogle Scholar | 22338713PubMed |

[21]  J. Zalasiewicz, C. N. Waters, M. Williams, A. D. Barnosky, A. Cerreata, P. Crutzen, E. Ellis, M. E. Ellis, I. J. Fairchild, J. Grinevald, P. K. Haff, I. Hajdas, R. Leinfelder, J. Mcneill, E. O. Odada, C. Poirier, D. Richter, W. Steffen, C. Summerhayes, J. P. M. Syvitski, D. Vidas, M. Wagreich, S. L. Wing, A. P. Wolfe, A. Zhisheng, When did the Anthropocene begin? A mid-twentieth century boundary is stratigraphically optimal. Quat. Int. 2015, 383, 196.
When did the Anthropocene begin? A mid-twentieth century boundary is stratigraphically optimal.Crossref | GoogleScholarGoogle Scholar |

[22]  J. Williams, P. J. Crutzen, Perspectives on our planet in the Anthropocene. Environ. Chem. 2013, 10, 269.
Perspectives on our planet in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlakt7rJ&md5=a9d19bd28d2b312e9ed3fe1bec0b9f3eCAS |

[23]  R. K. Pachauri, L. Meyer, IPCC Fifth Assessment Report 2014 (IPCC: Geneva). Available at http://www.ipcc.ch/report/ar5/syr/ [verified 20 March 2016].

[24]  J. Hansen, M. Sato, R. Ruedy, P. Kharecha, A. Lacis, R. Miller, L. Nazarenko, K. Lo, G. A. Schmidt, G. Russell, I. Aleinov, Dangerous human-made interference with climate: a GISS modelE study. Atmos. Chem. Phys. 2007, 7, 2287.
Dangerous human-made interference with climate: a GISS modelE study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ygs7c%3D&md5=d9e1b986c5ef29b23a3c8481685a558eCAS |

[25]  J. Rockström, W. Steffen, K. Noone, Å. Persson, F. S. Chapin, E. F. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, A safe operating space for humanity. Nature 2009, 461, 472.
A safe operating space for humanity.Crossref | GoogleScholarGoogle Scholar | 19779433PubMed |

[26]  P. Friedlingstein, R. M. Andrew, J. Rogelj, G. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, M. R. Raupach, M. Schaeffer, D. P. Van Vuuren, C. Le Quéré, Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 2014, 7, 709.
Persistent growth of CO2 emissions and implications for reaching climate targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyhsrnP&md5=6c09fd08648178690221dbac4a0d6676CAS |

[27]  UNFCCC, Copenhagen Accord 2009 (United Nations: Geneva). Available at http://unfccc.int/documentation/documents/advancedsearch/items/3594.php?rec=j&priref=600005735#beg [verified 20 March 2016].

[28]  S. Deetman, A. F. Hof, D. P. Van Vuuren, Deep CO2 emission reductions in a global bottom-up model approach. Clim. Policy 2015, 15, 253.
Deep CO2 emission reductions in a global bottom-up model approach.Crossref | GoogleScholarGoogle Scholar |

[29]  T. F. Stocker, The closing door of climate targets. Science 2013, 339, 280.
The closing door of climate targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslagtr8%3D&md5=2b7b6ada72544133177c12d27f98228bCAS | 23196911PubMed |

[30]  M. den Elzen, M. Meinshausen, D. van Vuuren, Multi-gas emission envelopes to meet greenhouse gas concentration targets: costs versus certainty of limiting temperature increase. Glob. Environ. Change 2007, 17, 260.
Multi-gas emission envelopes to meet greenhouse gas concentration targets: costs versus certainty of limiting temperature increase.Crossref | GoogleScholarGoogle Scholar |

[31]  Annual Energy Outlook 2015 with Projections to 2040 2015 (US Energy Information Agency: Washington, DC). Available at www.eia.gov/forecasts/aeo [verified 20 March 2016].

[32]  Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units; Proposed Rule, 79 Federal Register 34830 (18 June 2014) (to be codified at 40 C.F.R. pt 60) 2014. Available at https://www.federalregister.gov/articles/2014/06/18/2014-13726/carbon-pollution-emission-guidelines-for-existing-stationary-sources-electric-utility-generating [verified 20 March 2016].

[33]  M. Roelfsema, M. den Elzen, N. Höhne, A. F. Hof, N. Braun, H. Fekete, H. Böttcher, R. Brandsma, J. Larkin, Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies. Energy Policy 2014, 67, 781.
Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies.Crossref | GoogleScholarGoogle Scholar |

[34]  UNFCCC, Decision 1/CP.16, The Cancun Agreements. UNFCCC Document FCCC/CP/2010/7/Add.1 2010. Available at http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf [verified 20 March 2016].

[35]  N. Höhne, C. Taylor, R. Elias, M. Den Elzen, K. Riahi, C. Chen, J. Rogelj, G. Grassi, F. Wagner, K. Levin, E. Massetti, National GHG emissions reduction pledges and 2 C: comparison of studies. Clim. Policy 2012, 12, 356.
National GHG emissions reduction pledges and 2 C: comparison of studies.Crossref | GoogleScholarGoogle Scholar |

[36]  M. Landler, US and China reach climate accord after months of talks. The New York Times, 11 November 2014. Available at http://www.nytimes.com/2014/11/12/world/asia/china-us-xi-obama-apec.html?_r=0 [verified 20 March 2016].

[37]  M. R. Allen, D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, M. Meinshausen, N. Meinshausen, Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009, 458, 1163.
Warming caused by cumulative carbon emissions towards the trillionth tonne.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1SrtLk%3D&md5=33317a4e12d3bd99dfb2eb659e9ab497CAS | 19407800PubMed |

[38]  J. Hansen, M. Sato, P. Kharecha, D. Beerling, R. Berner, V. Masson-Delmotte, M. Pagani, M. Raymo, D. L. Royer, J. C. Zachos, Target atmospheric CO2: where should humanity aim? Open Atmos. Sci. J. 2008, 2, 217.
Target atmospheric CO2: where should humanity aim?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Khu7Y%3D&md5=92540fe26ffc46eeee5d032f4210a390CAS |

[39]  M. Meinshausen, N. Meinshausen, W. Hare, S. C. Raper, K. Frieler, R. Knutti, D. J. Frame, M. R. Allen, Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 2009, 458, 1158.
Greenhouse-gas emission targets for limiting global warming to 2 °C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Srs7Y%3D&md5=81417bfc989d121e5aff596a715051dfCAS | 19407799PubMed |

[40]  D. G. Victor, C. F. Kennel, Climate policy: ditch the 2 °C warming goal. Nature 2014, 514, 30.
Climate policy: ditch the 2 °C warming goal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1yhsLfJ&md5=b34ac53c9f75fe7b51ce339e9afab558CAS | 25279903PubMed |

[41]  P. Canan, S. O. Andersen, N. Reichman, B. Gareau, Introduction to the special issue on ozone layer protection and climate change: the extraordinary experience of building the Montreal Protocol, lessons learned, and hopes for future climate change efforts. J. Environ. Stud. Sci. 2015, 5, 111.
Introduction to the special issue on ozone layer protection and climate change: the extraordinary experience of building the Montreal Protocol, lessons learned, and hopes for future climate change efforts.Crossref | GoogleScholarGoogle Scholar |

[42]  S. Arrhenius, XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Philos. Mag. J. Sci. 1896, 41, 237.
XXXI. On the influence of carbonic acid in the air upon the temperature of the ground.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslaltbnL&md5=f381c3b6145a98ce4dcf03d7e6cb7891CAS |

[43]  M. J. Molina, F. S. Rowland, Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 1974, 249, 810.
Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlslGntr8%3D&md5=cc593057130859dd5a7ae5011e0684fcCAS |

[44]  D. W. Keith, M. Ha-Duong, J. K. Stolaroff, Climate strategy with CO2 capture from the air. Clim. Change 2006, 74, 17.
Climate strategy with CO2 capture from the air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xksleiu7w%3D&md5=1bc91243febbe22c4e41cc909c6e16beCAS |

[45]  National Research Council, Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration 2015. Available at http://www.nap.edu/catalog/18805/climate-intervention-carbon-dioxide-removal-and-reliable-sequestrationNRC [verified 20 March 2016].

[46]  National Research Council, Climate Intervention: Reflecting Sunlight to Cool Earth 2015. Available at http://www.nap.edu/catalog/18988/climate-intervention-reflecting-sunlight-to-cool-earth [verified 20 March 2016].

[47]  J. A. Lowe, C. Huntingford, S. C. Raper, C. D. Jones, S. K. Liddicoat, L. K. Gohar, How difficult is it to recover from dangerous levels of global warming? Environ. Res. Lett. 2009, 4, 014012.
How difficult is it to recover from dangerous levels of global warming?Crossref | GoogleScholarGoogle Scholar |

[48]  A. H. MacDougall, M. Eby, A. J. Weaver, If anthropogenic CO2 emissions cease, will atmospheric CO2 concentration continue to increase? J. Clim. 2013, 26, 9563.
If anthropogenic CO2 emissions cease, will atmospheric CO2 concentration continue to increase?Crossref | GoogleScholarGoogle Scholar |

[49]  K. Zickfeld, M. Eby, K. Alexander, A. J. Weaver, E. Crespin, T. Fichefet, H. Goosse, G. Philippon-Berthier, N. R. Edwards, P. B. Holden, A. V. Eliseev, Long-term climate change commitment and reversibility: an EMIC intercomparison. J. Clim. 2013, 26, 5782.
Long-term climate change commitment and reversibility: an EMIC intercomparison.Crossref | GoogleScholarGoogle Scholar |

[50]  K. Caldeira, G. Bala, L. Cao, The science of geoengineering. Annu. Rev. Earth Planet. Sci. 2013, 41, 231.
The science of geoengineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Siur3K&md5=fd982bb747729479f38cd05d02d95d5dCAS |

[51]  R. Pierrehumbert, Climate hacking is barking mad 2015. Available at http://www.slate.com/articles/health_and_science/science/2015/02/nrc_geoengineering_report_climate_hacking_is_dangerous_and_barking_mad.single.html [verified 20 March 2016].

[52]  T. M. Lenton, The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Manage. 2010, 1, 145.
The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKnur7P&md5=1519a4470695c53184c7b6cb2b016a20CAS |

[53]  K. S. Lackner, Capture of carbon dioxide from ambient air. Eur. Phys. J. Spec. Top. 2009, 176, 93.
Capture of carbon dioxide from ambient air.Crossref | GoogleScholarGoogle Scholar |

[54]  K. S. Lackner, S. Brennan, J. M. Matter, A. H. A. Park, A. Wright, B. Van Der Zwaan, The urgency of the development of CO2 capture from ambient air. Proc. Natl. Acad. Sci. USA 2012, 109, 13156.
The urgency of the development of CO2 capture from ambient air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWkurrN&md5=41a27e830ed1a1d8d3bba70e2ce86c60CAS | 22843674PubMed |

[55]  G. H. Rau, Enhancing the ocean’s role in CO2 mitigation, in Handbook of Global Environmental Pollution, Vol. 1: Global Environmental Change (Ed. B. Freeman) 2013, pp. 817–824 (Springer: New York).

[56]  R. D. Schuiling, P. Krijgsman, Enhanced weathering: an effective and cheap tool to sequester CO2. Clim. Change 2006, 74, 349.
Enhanced weathering: an effective and cheap tool to sequester CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xksleiu70%3D&md5=a9907c66ff2ee796b5444e807536e02cCAS |

[57]  S. E. Strand, G. Benford, Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments. Environ. Sci. Technol. 2009, 43, 1000.
Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1KjsA%3D%3D&md5=ca91c04754bc2f8e1b7fcb0bcb03346dCAS | 19320149PubMed |

[58]  H. D. Matthews, Can carbon cycle geoengineering be a useful complement to ambitious climate mitigation? Carbon Manage. 2010, 1, 135.
Can carbon cycle geoengineering be a useful complement to ambitious climate mitigation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKnur7O&md5=5824b28155c2d1b061bc30cbf1be432bCAS |

[59]  J. G. Shepherd, Geoengineering the Climate: Science, Governance and Uncertainty 2009 (Royal Society: London).

[60]  A. H. MacDougall, Reversing climate warming by artificial atmospheric carbon dioxide removal: can a Holocene‐like climate be restored? Geophys. Res. Lett. 2013, 40, 5480.
Reversing climate warming by artificial atmospheric carbon dioxide removal: can a Holocene‐like climate be restored?Crossref | GoogleScholarGoogle Scholar |

[61]  O. Boucher, P. R. Halloran, E. J. Burke, M. Doutriaux-Boucher, C. D. Jones, J. Lowe, M. A. Ringer, E. Robertson, P. Wu, Reversibility in an Earth system model in response to CO2 concentration changes. Environ. Res. Lett. 2012, 7, 024013.
Reversibility in an Earth system model in response to CO2 concentration changes.Crossref | GoogleScholarGoogle Scholar |

[62]  L. Cao, K. Caldeira, Atmospheric carbon dioxide removal: long-term consequences and commitment. Environ. Res. Lett. 2010, 5, 024011.
Atmospheric carbon dioxide removal: long-term consequences and commitment.Crossref | GoogleScholarGoogle Scholar |

[63]  I. M. Held, M. Winton, K. Takahashi, T. Delworth, F. Zeng, G. K. Vallis, Probing the fast and slow components of global warming by returning abruptly to pre-industrial forcing. J. Clim. 2010, 23, 2418.
Probing the fast and slow components of global warming by returning abruptly to pre-industrial forcing.Crossref | GoogleScholarGoogle Scholar |

[64]  A. Samanta, B. T. Anderson, S. Ganguly, Y. Knyazikhin, R. R. Nemani, R. B. Myneni, Physical climate response to a reduction of anthropogenic climate forcing. Earth Interact. 2010, 14, 1.
Physical climate response to a reduction of anthropogenic climate forcing.Crossref | GoogleScholarGoogle Scholar |

[65]  C. D. Thomas, Climate, climate change and range boundaries. Divers. Distrib. 2010, 16, 488.
Climate, climate change and range boundaries.Crossref | GoogleScholarGoogle Scholar |

[66]  K. Z. House, A. C. Baclig, M. Ranjan, E. A. van Nierop, J. Wilcox, H. J. Herzog, Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad. Sci. USA 2011, 108, 20428.
Economic and energetic analysis of capturing CO2 from ambient air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Knuw%3D%3D&md5=369da9353839ecb872a97121801b5b7cCAS | 22143760PubMed |

[67]  Organization for Economic Co-operation and Development, OECD Environmental Outlook to 2050 2012 (OECD Publishing: Paris)10.1787/9789264122246-EN