Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW

Neuropsychiatric pharmaceuticals and illicit drugs in wastewater treatment plants: a review

Alexandros G. Asimakopoulos A and Kurunthachalam Kannan A B
+ Author Affiliations
- Author Affiliations

A Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA.

B Corresponding author. Email: kurunthachalam.kannan@health.ny.gov




Dr Kurunthachalam Kannan was born in Mettupalayam, India. He received his Ph.D. in Environmental Chemistry and Ecotoxicology from Ehime University, Japan, in 1994. He is currently the Chief of the Organic Analytical Laboratory at Wadsworth Center, New York State Department of Health, Albany, New York, USA. He holds a joint appointment as a Professor at the Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany. Dr Kannan’s research interests are in understanding sources, pathways and distribution of persistent organic pollutants in the environment.



Dr Alexandros G. Asimakopoulos was born in Athens, Greece in 1986. He received his Ph.D. in Chemistry in 2014 from the Department of Chemistry of the National and Kapodistrian University of Athens, Greece. Currently, he is a research affiliate at Wadsworth Center, New York State Department of Health, Albany, New York, USA. His current studies include environmental, pharmaceutical and biomonitoring trace level analysis. His research is focussed on understanding environmental sources, pathways, distribution, dynamics and fate of chemical pollutants in biological and environmental media.

Environmental Chemistry 13(4) 541-576 https://doi.org/10.1071/EN15202
Submitted: 26 September 2015  Accepted: 20 February 2016   Published: 12 April 2016

Environmental context. Neuropsychiatric pharmaceuticals and illicit drugs in wastewaters are of increasing environmental concern. We compile the recent literature and evaluate the concentrations and profiles of various drugs and their removal efficiencies in wastewater treatment plants. The sewage epidemiology approach, used in the estimation of drug usage in communities, is discussed, and we make recommendations for future research in this area.

Abstract. Neuropsychiatric pharmaceuticals and illicit drugs encompass a broad range of compounds including opioids, amphetamine-type stimulants, cannabinoids, benzodiazepines, barbiturates, antipsychotics, anaesthetics, anti-epileptics and mood stabilisers, lysergic compounds, sympathomimetic amines and cocaine derivatives. In this article, we review studies on the occurrence and fate of these drugs in wastewater treatment plants. In general, among various drugs studied, the concentrations and detection frequencies of opioids and cocaine derivatives were the highest in wastewaters. The forensic analysis of wastewaters suggests that cocaine and opioids usage has increased. Given the fact that data on drug usage can be used for making regulatory decisions and policies, this review focuses on understanding the sources and environmental dynamics of neuropsychiatric and illicit drugs. There is a pressing need for more research on the magnitude and extent of illicit drug consumption. The ‘sewage epidemiology’ approach, currently applied in the estimation of illicit drug consumption in communities, is reviewed. The field of wastewater research has been advancing in multipronged paths, incorporating concepts in analytical chemistry, organic chemistry, environmental chemistry, biochemistry, sewage engineering, drug epidemiology and statistics. Future prospects with regard to the occurrence and environmental fate of illicit and psychoactive drugs are recommended.


References

[1]  N. S. Thomaidis, A. G. Asimakopoulos, A. A. Bletsou, Emerging contaminants: a tutorial mini-review. Glob. NEST J. 2012, 14, 72.

[2]  J. H. Writer, I. Ferrer, L. B. Barber, E. M. Thurman, Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters. Sci. Total Environ. 2013, 461–462, 519.
Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters.Crossref | GoogleScholarGoogle Scholar | 23751335PubMed |

[3]  C. Postigo, M. López de Alda, D. Barceló, Drugs of abuse and their metabolites in the Ebro river basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environ. Int. 2010, 36, 75.
Drugs of abuse and their metabolites in the Ebro river basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2mtL7E&md5=20ef08f0ba9ae6179aae47b3edc41691CAS | 19913915PubMed |

[4]  V. Calisto, V. I. Esteves, Psychiatric pharmaceuticals in the environment. Chemosphere 2009, 77, 1257.
Psychiatric pharmaceuticals in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyrtb%2FP&md5=a3ff50c2d0c0c84823d30089979d60ccCAS | 19815251PubMed |

[5]  R. Pal, M. Megharaj, K. P. Kirkbtide, R. Naidu, Illicit drugs and the environment – a review. Sci. Total Environ. 2013, 463–464, 1079.
Illicit drugs and the environment – a review.Crossref | GoogleScholarGoogle Scholar | 22726813PubMed |

[6]  World Drug Report 2013 (United Nations Office on Drugs and Crime: Vienna). Available at (http://www.unodc.org/unodc/secured/wdr/wdr2013/World_Drug_Report_2013.pdf [verified 4 April 2014].

[7]  The Global Use of Medicines: Outlook Through 2017 (Report 2013) 2013 (IMS Institute for Healthcare Informatics). Available at http://www.imshealth.com/deployedfiles/imshealth/Global/Content/Corporate/IMS%20Health%20Institute/Reports/Global_Use_of_\Meds_Outlook_2017/IIHI_Global_Use_of_Meds_Report_2013.pdf [verified 4 April 2014].

[8]  R. Boleda, T. Galceran, F. Ventura, Trace determination of cannabinoids and opiates in wastewater and surface waters by ultraperformance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2007, 1175, 38.
Trace determination of cannabinoids and opiates in wastewater and surface waters by ultraperformance liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGhsrjO&md5=59a05d0653e0746ad945e33d7d34d47cCAS |

[9]  J. Jung, M. R. Meyer, H. H. Maurer, C. Neusüß, W. Weinmann, V. Auwärter, Studies on the metabolism of the 9-tetrahydrocannabinol precursor 9-tetrahydrocannabinolic acid A (9-THCA-A) in rat using LC-MS/MS, LC-QTOFMS and GC-MS techniques. J. Mass Spectrom. 2009, 44, 1423.
Studies on the metabolism of the 9-tetrahydrocannabinol precursor 9-tetrahydrocannabinolic acid A (9-THCA-A) in rat using LC-MS/MS, LC-QTOFMS and GC-MS techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ynurzJ&md5=274efebc4cdbb3974c0fd96932a6b7feCAS | 19728318PubMed |

[10]  R. Boleda, T. Galceran, F. Ventura, Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain. Water Res. 2009, 43, 1126.
Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVGjt7k%3D&md5=38a8a4d65ab88c2189e9a27093c6f376CAS |

[11]  M. Peschka, I. P. Eubeler, T. P. Knepper, Occurrence and fate of barbiturates in the aquatic environment. Environ. Sci. Technol. 2006, 40, 7200.
Occurrence and fate of barbiturates in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsV2hsLg%3D&md5=52469ad2a900275e43741b5f5902671cCAS | 17180967PubMed |

[12]  A. Mendoza, M. López de Alda, S. González-Alonso, N. Mastroianni, D. Barceló, Y. Valcárcel, Occurrence of drugs of abuse and benzodiazepines in river waters from the Madrid region (central Spain). Chemosphere 2014, 95, 247.
Occurrence of drugs of abuse and benzodiazepines in river waters from the Madrid region (central Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFeksr3J&md5=bb9bd90906902e17427988014aa09846CAS | 24083902PubMed |

[13]  B. Kasprzyk-Hordern, R. M. Dinsdale, A. J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in south Wales, UK. Water Res. 2008, 42, 3498.
The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in south Wales, UK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFagu74%3D&md5=dffb6bebbd7d86de74627d034ed9381fCAS | 18514758PubMed |

[14]  E. Freye, Pharmacology and Abuse of Cocaine, Amphetamines, Ecstasy and Related Designer Drugs 2009 (Springer Science + Business Media BV: Dordrecht, Netherlands).

[15]  D. R. Baker, B. Kasprzyk-Hordern, Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid-phase extraction and liquid chromatography–mass spectrometry. J. Chromatogr. A 2011, 1218, 8036.
Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid-phase extraction and liquid chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12kt7%2FJ&md5=fced84c88d9f434167e96581b25f69e2CAS | 21968350PubMed |

[16]  J. Jean, Y. Perrodin, C. Pivot, D. Trepo, M. Perraud, J. Droquet, F. Tissot-Guerraz, F. Locher, Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. J. Environ. Manage. 2012, 103, 113.
Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1Sksbk%3D&md5=c30033b0cfe3a440a6210e46cba270f4CAS | 22466706PubMed |

[17]  O. A. H. Jones, N. Voulvoulis, J. N. Lester, Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment. Crit. Rev. Toxicol. 2004, 34, 335.
Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslSgsb0%3D&md5=cadcb5dbd58327edbc360163e7cba18bCAS |

[18]  S. Kaplan, Review: pharmacological pollution in water. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1074.
Review: pharmacological pollution in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVOrtbg%3D&md5=12a98d06b170a864a87b01fed3b9f1f7CAS |

[19]  S. W. Smith, Chiral toxicology: it’s the same thing… only different. Toxicol. Sci. 2009, 110, 4.
Chiral toxicology: it’s the same thing… only different.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFKktbg%3D&md5=2991420e99cb47995b5aecca8455c9e7CAS | 19414517PubMed |

[20]  S. Pérez, D. Barceló, Applications of LC-MS to quantitation and evaluation of the environmental fate of chiral drugs and their metabolites. TrAC – Trends Anal. Chem. 2008, 27, 836.
Applications of LC-MS to quantitation and evaluation of the environmental fate of chiral drugs and their metabolites.Crossref | GoogleScholarGoogle Scholar |

[21]  G. K. Gourlay, Advances in opioid pharmacology. Support. Care Cancer 2005, 13, 153.
Advances in opioid pharmacology.Crossref | GoogleScholarGoogle Scholar | 15611852PubMed |

[22]  M. G. Bissell, M. A. Peat, Opioids 1: opiates, in Clinical Toxicology Testing: A Guide for Laboratory Professionals (Eds B. Magnani, M. G. Bissell, T. C. Kwong, A. H. B. Wu) 2012, pp. 140–148 (CAP Press: Northfield, IL).

[23]  H.-R. Lin, C.-L. Chen, C.-L. Huang, S.-T. Chen, A.-C. Lua, Simultaneous determination of opiates, methadone, buprenorphine and metabolites in human urine by superficially porous liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 925, 10.
Simultaneous determination of opiates, methadone, buprenorphine and metabolites in human urine by superficially porous liquid chromatography tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Cjtbs%3D&md5=f6d5c7452369ae62e5300b261f28cca8CAS | 23507455PubMed |

[24]  S. Terzic, I. Senta, M. Ahel, Illicit drugs in wastewater of the city of Zagreb (Croatia) – estimation of drug abuse in a transition country. Environ. Pollut. 2010, 158, 2686.
Illicit drugs in wastewater of the city of Zagreb (Croatia) – estimation of drug abuse in a transition country.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1yktLo%3D&md5=fce066eb700802ef016133c29c95ebd5CAS | 20510491PubMed |

[25]  A. C. Chiaia, C. Banta-Green, J. Field, Eliminating solid-phase extraction with large-volume injection LC/MS/MS: analysis of illicit and legal drugs and human urine indicators in US wastewaters. Environ. Sci. Technol. 2008, 42, 8841.
Eliminating solid-phase extraction with large-volume injection LC/MS/MS: analysis of illicit and legal drugs and human urine indicators in US wastewaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCiu7rI&md5=a7c1581897318acfc4cbe1f5985b2a5aCAS | 19192807PubMed |

[26]  T. B. Gregory, Hydromorphone: evolving to meet the challenges of today’s health care environment. Clin. Ther. 2013, 35, 2007.
Hydromorphone: evolving to meet the challenges of today’s health care environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKit7zJ&md5=ab4ccf9269c521631e5739b030dca08cCAS | 24290733PubMed |

[27]  A. Elkader, B. Sproule, Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin. Pharmacokinet. 2005, 44, 661.
Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlWjurs%3D&md5=9aa7617307f81a1e5176e7b99a34a3b1CAS | 15966752PubMed |

[28]  C. Postigo, M. J. Lopez de Alda, D. Barceló, Analysis of drugs of abuse and their human metabolites in water by LC-MS2: a non-intrusive tool for drug abuse estimation at the community level. TrAC – Trends Anal. Chem. 2008, 27, 1053.
Analysis of drugs of abuse and their human metabolites in water by LC-MS2: a non-intrusive tool for drug abuse estimation at the community level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKhsLzM&md5=135cac84be88b943e5dd79fbef037d7dCAS |

[29]  S. Castiglioni, E. Zuccato, E. Crisci, C. Chiabrando, R. Fanelli, R. Bagnati, Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography–tandem mass spectrometry. Anal. Chem. 2006, 78, 8421.
Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SqtLvM&md5=b1d367fb5dd0e3c42daaffa4d0baa25aCAS | 17165835PubMed |

[30]  T. Nefau, S. Karolak, L. Castillo, V. Boireau, Y. Levi, Presence of illicit drugs and metabolites in influents and effluents of 25 sewage water treatment plants and map of drug consumption in France. Sci. Total Environ. 2013, 461–462, 712.
Presence of illicit drugs and metabolites in influents and effluents of 25 sewage water treatment plants and map of drug consumption in France.Crossref | GoogleScholarGoogle Scholar | 23770552PubMed |

[31]  E. M. Peckham, J. R. Traynor, Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague–Dawley rats. J. Pharmacol. Exp. Ther. 2005, 316, 1195.
Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague–Dawley rats.Crossref | GoogleScholarGoogle Scholar | 16291875PubMed |

[32]  J. G. Schier, R. S. Hoffman, Cocaine and other sympathomimetics, in ECG in Emergency Medicine and Acute Care (Eds T. C. Chan, W. J. Brady, R. A. Harrigan, J. P. Ornato, P. Rosen) 2005, pp. 278–281 (Elsevier: Mosby, PA).

[33]  L. Bijlsma, C. Boix, W. M. A. Niessen, M. Ibáñez, J. V. Sancho, F. Hernández, Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment. Sci. Total Environ. 2013, 443, 200.
Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKlsrw%3D&md5=1559b0c7c0fa5a4bb550d60f77c48f1bCAS | 23186631PubMed |

[34]  The State of the Drugs Problem in Europe, EMCDDA Annual Report 2010 (European Monitoring Centre for Drugs and Drug Addiction). Available at www.emcdda.europa.eu/publications/annual-report/2010 [verified 4 April 2014].

[35]  G. F. Jackson, J. J. Saady, A. Poklis, Urinary excretion of benzoylecgonine following ingestion of health Inca tea. Forensic Sci. Int. 1991, 49, 57.
Urinary excretion of benzoylecgonine following ingestion of health Inca tea.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3js1SmtQ%3D%3D&md5=8f18858237622b862626fdc1e9be153dCAS | 2032667PubMed |

[36]  L. Bijlsma, J. V. Sancho, F. Hernández, W. M. A. Niessen, Fragmentation pathways of drugs of abuse and their metabolites based on QTOF MS/MS and MSE accurate-mass spectra. J. Mass Spectrom. 2011, 46, 865.
Fragmentation pathways of drugs of abuse and their metabolites based on QTOF MS/MS and MSE accurate-mass spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOls7vI&md5=cf69100adc6e1ac90b2c54acf0cf28b2CAS | 21915950PubMed |

[37]  M. Huerta-Fontela, O. Pineda, F. Ventura, M. T. Galceran, New chlorinated amphetamine-type-stimulants disinfection by-products formed during drinking-water treatment. Water Res. 2012, 46, 3304.
New chlorinated amphetamine-type-stimulants disinfection by-products formed during drinking-water treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFKntbk%3D&md5=ffb045394221444bf934521a3e7e07b5CAS | 22534122PubMed |

[38]  T. H. Boles, M. J. M. Wells, Analysis of amphetamine and methamphetamine as emerging pollutants in wastewater and wastewater-impacted streams. J. Chromatogr. A 2010, 1217, 2561.
Analysis of amphetamine and methamphetamine as emerging pollutants in wastewater and wastewater-impacted streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWksL8%3D&md5=82d053cd163d29af9aed3ac5992d192fCAS | 20132937PubMed |

[39]  D. A. Burgard, R. Fuller, B. Becker, R. Ferrell, M. J. Dinglasan-Panlilio, Potential trends in attention deficit hyperactivity disorder (ADHD) drug use on a college campus: wastewater analysis of amphetamine and ritalinic acid. Sci. Total Environ. 2013, 450–451, 242.
Potential trends in attention deficit hyperactivity disorder (ADHD) drug use on a college campus: wastewater analysis of amphetamine and ritalinic acid.Crossref | GoogleScholarGoogle Scholar | 23500822PubMed |

[40]  B. Kasprzyk-Hordern, R. M. Dinsdale, A. J. Guwy, Illicit drugs and pharmaceuticals in the environment – forensic applications of environmental data. Part 1: estimation of the usage of drugs in local communities. Environ. Pollut. 2009, 157, 1773.
Illicit drugs and pharmaceuticals in the environment – forensic applications of environmental data. Part 1: estimation of the usage of drugs in local communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVCgsbw%3D&md5=afe9f2e7257c2e0aa5b3b108bd5d7b7fCAS | 19324480PubMed |

[41]  B. Kasprzyk-Hordern, D. R. Baker, Estimation of community-wide drugs use via stereoselective profiling of sewage. Sci. Total Environ. 2012, 423, 142.
Estimation of community-wide drugs use via stereoselective profiling of sewage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVOmurg%3D&md5=d990db7e33306f3ab6a68164c3e2d951CAS | 22404981PubMed |

[42]  R. G. Pertwee, Cannabinoids 2005 (Springer-Verlag: Berlin, Germany).

[43]  E. Zuccato, S. Castiglioni, R. Bagnati, C. Chiabrando, P. Grassi, R. Fanelli, Illicit drugs, a novel group of environmental contaminants. Water Res. 2008, 42, 961.
Illicit drugs, a novel group of environmental contaminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFyruro%3D&md5=6ed434fa2a14b2e9fff0e2165f2c3464CAS | 17935751PubMed |

[44]  G. K. Poch, K. L. Klette, D. A. Hallare, M. G. Manglicmot, R. J. Czarny, L. K. McWhorter, C. J. Anderson, Detection of metabolites of lysergic acid diethylamide (LSD) in human urine specimens: 2-oxo-3-hydroxy-LSD, a prevalent metabolite of LSD. J. Chromatogr. B Biomed. Sci. Appl. 1999, 724, 23.
Detection of metabolites of lysergic acid diethylamide (LSD) in human urine specimens: 2-oxo-3-hydroxy-LSD, a prevalent metabolite of LSD.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvF2kur0%3D&md5=599d4381f2a01a15b2f7c7c599a1675aCAS | 10202954PubMed |

[45]  M. D. Coleman, Human Drug Metabolism: an Introduction, 2nd edn 2010 (Wiley: Chichester, UK).

[46]  K. Y. Rust, M. R. Baumgartner, N. Meggiolaro, T. Kraemer, Detection and validated quantification of 21 benzodiazepines and 3 ‘z-drugs’ in human hair by LC–MS/MS. Forensic Sci. Int. 2012, 215, 64.
Detection and validated quantification of 21 benzodiazepines and 3 ‘z-drugs’ in human hair by LC–MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVCitLg%3D&md5=33050037c3685da4eb3e9ffd808475c8CAS | 21873006PubMed |

[47]  R. Brenneisen, L. Raymond, Pharmacotherapy of schizophrenia in pharmacology of flunitrazepam and other benzodiazepines, in Benzodiazepines and GHB Detection and Pharmacology (Ed. S. J. Salamone) 2001, pp. 1–20 (Humana Press: Totowa, NJ, US).

[48]  I. Sampaio, F. Puga, H. Veiga, M. Cagy, R. Piedade, P. Ribeiro, Influence of bromazepam on cortical interhemispheric coherence. Arq. Neuropsiquiatr. 2007, 65, 77.
Influence of bromazepam on cortical interhemispheric coherence.Crossref | GoogleScholarGoogle Scholar | 17420832PubMed |

[49]  M. Jennesson, A. M. van Eeghen, P. A. Caruso, J. L. Paolini, E. A. Thiele, Clobazam therapy of refractory epilepsy in tuberous sclerosis complex. Epil. Res. 2013, 104, 269.
Clobazam therapy of refractory epilepsy in tuberous sclerosis complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslymsrnE&md5=45b609ffa7000f760c9d819bfe913af4CAS |

[50]  J. de Leon, E. Spina, F. J. Diaz, Clobazam therapeutic drug monitoring: a comprehensive review of the literature with proposals to improve future studies. Ther. Drug Monit. 2013, 35, 30.
Clobazam therapeutic drug monitoring: a comprehensive review of the literature with proposals to improve future studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2huro%3D&md5=13fc3242a5a2489f57455af3bf6a6624CAS | 23318278PubMed |

[51]  A. W. Jones, A. Holmgren, Concentrations of diazepam and nordiazepam in 1000 blood samples from apprehended drivers – therapeutic use or abuse of anxiolytics? J. Pharm. Pract. 2013, 26, 198.
Concentrations of diazepam and nordiazepam in 1000 blood samples from apprehended drivers – therapeutic use or abuse of anxiolytics?Crossref | GoogleScholarGoogle Scholar | 22797834PubMed |

[52]  J. Hackett, A. A. Elian, Extraction and analysis of flunitrazepam/7-aminoflunitrazepam in blood and urine by LC-PDA and GC-MS using butyl SPE columns. Forensic Sci. Int. 2006, 157, 156.
Extraction and analysis of flunitrazepam/7-aminoflunitrazepam in blood and urine by LC-PDA and GC-MS using butyl SPE columns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFyms7g%3D&md5=9d23ac98e9beb64f7856c7f9ec3f615bCAS | 15955650PubMed |

[53]  J. Feely, P. V. Kavanagh, S. M. McNamara, The detection and quantitation of 7-aminoflunitrazepam, the major urinary metabolite of flunitrazepam, by gas chromatography/mass spectrometry. Ir. J. Med. Sci. 1999, 168, 189.
The detection and quantitation of 7-aminoflunitrazepam, the major urinary metabolite of flunitrazepam, by gas chromatography/mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFOnurc%3D&md5=64e6fc9205129e38c34d1b9e9d2c5c71CAS | 10540786PubMed |

[54]  M. Schwartz, K. R. Muñana, J. A. Nettifee-Osborne, K. M. Messenger, M. G. Papich, The pharmacokinetics of midazolam after intravenous, intramuscular, and rectal administration in healthy dogs. J. Vet. Pharmacol. Ther. 2013, 36, 471.
The pharmacokinetics of midazolam after intravenous, intramuscular, and rectal administration in healthy dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWrsrnJ&md5=3232786fe3fa83df244d449022aa221dCAS | 23256899PubMed |

[55]  G. L. Penna, F. M. Fialho, P. Kurtz, A. M. Japiassú, M. Kalichsztein, G. Nobre, N. R. Villela, E. Bouskela, Changing sedative infusion from propofol to midazolam improves sublingual microcirculatory perfusion in patients with septic shock. J. Crit. Care 2013, 28, 825.
Changing sedative infusion from propofol to midazolam improves sublingual microcirculatory perfusion in patients with septic shock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslCjt70%3D&md5=f76dda1682abdc97f18b2154dce5e321CAS | 23683563PubMed |

[56]  S. J. Enna, D. B. Bylund, Oxazepam, in xPharm: the Comprehensive Pharmacology Reference 2008, pp. 1–5, (Elsevier: Amsterdam).

[57]  B. Subedi, S. Lee, H.-B. Moon, K. Kannan, Psychoactive pharmaceuticals in sludge and their emission from wastewater treatment facilities in Korea. Environ. Sci. Technol. 2013, 47, 13321.
Psychoactive pharmaceuticals in sludge and their emission from wastewater treatment facilities in Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygsbfF&md5=02c33cfcc369ba791ec768eb280b98c2CAS | 24164172PubMed |

[58]  D. Henn, D. DeEugenio, Drugs – The Straight Facts – Barbiturates 2007 (Chelsea House Publishers: New York).

[59]  A. Bortolozzi, L. Díaz-Mataix, F. Artigas, Pharmacology, in Antidepressants, Antipsychotics, Anxiolytics: from Chemistry and Pharmacology to Clinical Application (Eds H. Buschmann, J. L. Díaz, J. Holenz, A. Párraga, A. Torrens, J. M. Vela) 2007, Vol. 1, pp. 389–448 (Wiley-VCH Verlag: Weinheim, Germany).

[60]  J. Holenz, J. Luis Díaz, H. Buschmann, Marketed drugs and drugs in development, in Antidepressants, Antipsychotics, Anxiolytics: from Chemistry and Pharmacology to Clinical Application (Eds H. Buschmann, J. L. Díaz, J. Holenz, A. Párraga, A. Torrens, J. M. Vela) 2007, pp. 1183–1197 (Wiley-VCH Verlag: Weinheim, Germany).

[61]  B. W. Urban, The site of anesthetic action, in Modern Anesthetics (Eds J. Schüttler, H. Schwilden) 2008, Vol. 1, pp. 3–30 (Springer-Verlag: Heidelberg, Germany).

[62]  P. C. Rúa-Gómez, W. Püttmann, Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants. Environ. Sci. Pollut. Res. 2012, 19, 689.
Occurrence and removal of lidocaine, tramadol, venlafaxine, and their metabolites in German wastewater treatment plants.Crossref | GoogleScholarGoogle Scholar |

[63]  N.-H. Huynh, N. Tyrefors, L. Ekman, M. Johansson, Determination of fentanyl in human plasma and fentanyl and norfentanyl in human urine using LC-MS/MS. J. Pharm. Biomed. Anal. 2005, 37, 1095.
Determination of fentanyl in human plasma and fentanyl and norfentanyl in human urine using LC-MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Kmtb4%3D&md5=c7c0e5359b8bceda2efc4e4cc8fc3d2dCAS | 15862690PubMed |

[64]  J. de Leon, A Practitioner’s Guide to Prescribing Anti-epileptics and Mood Stabilizers for Adults with Intellectual Disabilities 2012 (Springer Science + Business Media BV: New York).

[65]  U. Hass, U. Duennbier, G. Massmann, Occurrence and distribution of psychoactive compounds and their metabolites in the urban water cycle of Berlin (Germany). Water Res. 2012, 46, 6013.
Occurrence and distribution of psychoactive compounds and their metabolites in the urban water cycle of Berlin (Germany).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaiu7jK&md5=ad04501740c522e4d3c39ab4653b4a57CAS | 22967903PubMed |

[66]  J. Palamar, How ephedrine escaped regulation in the United States: a historical review of misuse and associated policy. Health Policy 2011, 99, 1.
How ephedrine escaped regulation in the United States: a historical review of misuse and associated policy.Crossref | GoogleScholarGoogle Scholar | 20685002PubMed |

[67]  N. A. Flavahan, Phenylpropanolamine constricts mouse and human blood vessels by preferentially activating 2-adrenoceptors. J. Pharmacol. Exp. Ther. 2004, 313, 432.
Phenylpropanolamine constricts mouse and human blood vessels by preferentially activating 2-adrenoceptors.Crossref | GoogleScholarGoogle Scholar | 15608085PubMed |

[68]  A. L. N. van Nuijs, S. Castiglioni, I. Tarcomnicu, C. Postigo, M. Lopez de Alda, H. Neels, E. Zuccato, D. Barceló, A. Covaci, Illicit drug consumption estimations derived from wastewater analysis: a critical review. Sci. Total Environ. 2011, 409, 3564.
Illicit drug consumption estimations derived from wastewater analysis: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGktLfF&md5=1d4bd1dbb4255963d6fd67f5ee3c7c2dCAS |

[69]  T. A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245.
Occurrence of drugs in German sewage treatment plants and rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslaqt7k%3D&md5=b5dd527c4489c01da5e6d729c583f896CAS |

[70]  C. Metcalfe, K. Tindale, H. Li, A. Rodayan, V. Yargeau, Illicit drugs in Canadian municipal wastewater and estimates of community drug use. Environ. Pollut. 2010, 158, 3179.
Illicit drugs in Canadian municipal wastewater and estimates of community drug use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFamu7bF&md5=17ea34cff7b980f4078d5b403d63cf4cCAS | 20667638PubMed |

[71]  B. Subedi, S. Lee, H.-B. Moon, K. Kannan, Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea. Environ. Int. 2014, 68, 33.
Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVGksbg%3D&md5=b9ad2ce75bf0c4f62c599cb1e862146eCAS | 24695211PubMed |

[72]  R. Reif, A. Santos, S. J. Judd, J. M. Lema, F. Omil, Occurrence and fate of pharmaceutical and personal care products in a sewage treatment works. J. Environ. Monit. 2011, 13, 137.
Occurrence and fate of pharmaceutical and personal care products in a sewage treatment works.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Khsg%3D%3D&md5=43acefbe5b96394aa8131d34055ebeccCAS | 21057683PubMed |

[73]  N. Ratola, A. Cincinelli, A. Alves, A. Katsoyiannis, Occurrence of organic microcontaminants in the wastewater treatment process, a mini review. J. Hazard. Mater. 2012, 239–240, 1.
Occurrence of organic microcontaminants in the wastewater treatment process, a mini review.Crossref | GoogleScholarGoogle Scholar | 22771351PubMed |

[74]  Z. H. Li, T. Randak, Residual pharmaceutically active compounds (PhACs) in aquatic environment – status, toxicity and kinetics: a review. Vet. Med. 2009, 52, 295.

[75]  M. Pedrouzo, F. Borrull, E. Pocurull, R. M. Marce, Drugs of abuse and their metabolites in waste and surface waters by liquid chromatography–tandem mass spectrometry. J. Sep. Sci. 2011, 34, 1091.
Drugs of abuse and their metabolites in waste and surface waters by liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1Cjsb4%3D&md5=3a684db58d90c6dd7bbce4cd45883646CAS | 21491600PubMed |

[76]  P. Verlicchi, A. Galletti, M. Petrovic, D. Barceló, M. Al Aukidy, E. Zambello, Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed – analysis of their respective contributions. Sci. Total Environ. 2013, 454–455, 411.
Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed – analysis of their respective contributions.Crossref | GoogleScholarGoogle Scholar | 23563255PubMed |

[77]  A. Rodayan, P. A. Segura, V. Yargeau, Ozonation of wastewater: removal and transformation products of drugs of abuse. Sci. Total Environ. 2014, 487, 763.
Ozonation of wastewater: removal and transformation products of drugs of abuse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKgsrvL&md5=dca6673174c832453435ec020b2158c4CAS | 24315025PubMed |

[78]  A. Rodayan, M. Majewsky, V. Yargeau, Impact of approach used to determine removal levels of drugs of abuse during wastewater treatment. Sci. Total Environ. 2014, 487, 731.
Impact of approach used to determine removal levels of drugs of abuse during wastewater treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVagtrs%3D&md5=14feb623755d5f95acc1047b07e0d7a0CAS | 24726517PubMed |

[79]  E. Carmona, V. Andreu, Y. Picó, Occurrence of acidic pharmaceuticals and personal care products in Turia River basin: from waste to drinking water. Sci. Total Environ. 2014, 484, 53.
Occurrence of acidic pharmaceuticals and personal care products in Turia River basin: from waste to drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVSrurY%3D&md5=bf9bdcbca22dbe5e82df2bd56ed35c3cCAS | 24686145PubMed |

[80]  Y. Li, G. Zhu, W. Jern Ng, S. K. Tan, A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci. Total Environ. 2014, 468–469, 908.
A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism.Crossref | GoogleScholarGoogle Scholar | 24091118PubMed |

[81]  M. E. Hoque, F. Cloutier, C. Arcieri, M. McInnes, T. Sultana, C. Murray, P. A. Vanrolleghem, C. D. Metcalfe, Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon. Sci. Total Environ. 2014, 487, 801.
Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVSltw%3D%3D&md5=62242fd7cca1a36ca6a0190249533818CAS | 24393598PubMed |

[82]  J.-D. Berset, R. Brenneisen, C. Mathieu, Analysis of licit and illicit drugs in waste, surface and lake water samples using large-volume direct-injection high-performance liquid chromatography–electrospray tandem mass spectrometry (HPLC-MS/MS). Chemosphere 2010, 81, 859.
Analysis of licit and illicit drugs in waste, surface and lake water samples using large-volume direct-injection high-performance liquid chromatography–electrospray tandem mass spectrometry (HPLC-MS/MS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Omt7jP&md5=588f9b968f6cfb851ed8632bf152a4b5CAS | 20801487PubMed |

[83]  D. A. Hummel, D. Löffler, G. Fink, T. A. Ternes, Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry. Environ. Sci. Technol. 2006, 40, 7321.
Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ChsLvK&md5=783841646e7b3d03c2d3de1f23b83ca7CAS |

[84]  D. R. Baker, B. Kasprzyk-Hordern, Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments. Sci. Total Environ. 2013, 454–455, 442.
Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments.Crossref | GoogleScholarGoogle Scholar | 23563258PubMed |

[85]  D. R. Baker, B. Kasprzyk-Hordern, Multiresidue determination of the sorption of illicit drugs and pharmaceuticals to wastewater suspended particulate matter using pressurized liquid extraction, solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 7901.
Multiresidue determination of the sorption of illicit drugs and pharmaceuticals to wastewater suspended particulate matter using pressurized liquid extraction, solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12ktrfF&md5=d46ebda2ebabfea455d60a7100ed5c24CAS | 21968348PubMed |

[86]  A. Y.-C. Lin, X.-H. Wang, C.-F. Lin, Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere 2010, 81, 562.
Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wmu73M&md5=d22b21d6f556cf32abf60e07391cb2efCAS |

[87]  L. Bijlsma, E. Emke, F. Hernández, P. De Voogt, Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high-resolution mass spectrometry. Chemosphere 2012, 89, 1399.
Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high-resolution mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSltLrO&md5=1542e90494fcfb4f2e8fee83f4b67fc4CAS | 22784865PubMed |

[88]  C. Postigo, M. J. Lopez de Alda, D. Barceló, Fully automated determination in the low nanogram per liter level of different classes of drugs of abuse in sewage water by on-line solid-phase extraction–liquid chromatography–electrospray tandem mass spectrometry. Anal. Chem. 2008, 80, 3123.
Fully automated determination in the low nanogram per liter level of different classes of drugs of abuse in sewage water by on-line solid-phase extraction–liquid chromatography–electrospray tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVSqtL4%3D&md5=b2bb55e31e4b406ccde637d73e9e49b1CAS | 18376876PubMed |

[89]  L. Bijlsma, R. Serrano, C. Ferrer, I. Tormos, F. Hernández, Occurrence and behavior of illicit drugs and metabolites in sewage water from the Spanish Mediterranean coast (Valencia region). Sci. Total Environ. 2014, 487, 703.
Occurrence and behavior of illicit drugs and metabolites in sewage water from the Spanish Mediterranean coast (Valencia region).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKgtLbO&md5=9f2a423a93c78b3843f0b620ebe9bf61CAS | 24342491PubMed |

[90]  A. L. N. van Nuijs, J.-F. Mougel, I. Tarcomnicu, L. Bervoets, R. Blust, P. G. Jorens, H. Neels, A. Covaci, A one-year investigation of the occurrence of illicit drugs in wastewater from Brussels, Belgium. J. Environ. Monit. 2011, 13, 1008.
A one-year investigation of the occurrence of illicit drugs in wastewater from Brussels, Belgium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt12msLk%3D&md5=ac251f2e98f8d739e8ba1cd9aed4c500CAS |

[91]  A. L. N. van Nuijs, B. Pecceu, L. Theunis, N. Dubois, C. Charlier, P. G. Jorens, L. Bervoets, R. Blust, H. Neels, A. Covaci, Cocaine and metabolites in waste and surface water across Belgium. Environ. Pollut. 2009, 157, 123.
Cocaine and metabolites in waste and surface water across Belgium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGgsbzE&md5=d2b49b8f307022b97c9d4ab884b0c017CAS |

[92]  D. R. Baker, B. Kasprzyk-Hordern, Multiresidue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 1620.
Multiresidue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography–positive electrospray ionisation tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFCrsr4%3D&md5=f146fb704cf721d20d81f007bf8b2a07CAS | 21334631PubMed |

[93]  H. F. Schröder, W. Gebhardt, M. Thevis, Anabolic, doping, and lifestyle drugs, and selected metabolites in wastewater – detection, quantification, and behaviour monitored by high-resolution MS and MSn before and after sewage treatment. Anal. Bioanal. Chem. 2010, 398, 1207.
Anabolic, doping, and lifestyle drugs, and selected metabolites in wastewater – detection, quantification, and behaviour monitored by high-resolution MS and MSn before and after sewage treatment.Crossref | GoogleScholarGoogle Scholar | 20652555PubMed |

[94]  M. van der Aa, L. Bijlsma, E. Emke, E. Dijkman, A. L. N. Van Nuijs, B. Van de Ven, F. Hernández, A. Versteegh, P. De Voogt, Risk assessment for drugs of abuse in the Dutch water cycle. Water Res. 2013, 47, 1848.
Risk assessment for drugs of abuse in the Dutch water cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKmtLk%3D&md5=49679588c66354c947e38fc2db29de02CAS | 23391332PubMed |

[95]  A. C. Johnson, M. D. Jürgens, R. J. Williams, K. Kümmerer, A. Kortenkamp, J. P. Sumpter, Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. J. Hydrol. 2008, 348, 167.
Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGisrzI&md5=99f2943b28058afd1a8fedcf41d86161CAS |

[96]  A. Jelic, M. Gros, A. Ginebreda, R. Cespedes-Sánchez, F. Ventura, M. Petrovic, D. Barcelo, Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011, 45, 1165.
Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVaj&md5=15770a09b17879f275585ae2aad2fa12CAS | 21167546PubMed |

[97]  S. M. Ruel, J. M. Choubert, M. Esperanza, C. Miège, P. Navalón Madrigal, H. Budzinski, K. Le Ménach, V. Lazarova, M. Coquery, On-site evaluation of the removal of 100 micropollutants through advanced wastewater treatment processes for reuse applications. Water Sci. Technol. 2011, 63, 2486.
On-site evaluation of the removal of 100 micropollutants through advanced wastewater treatment processes for reuse applications.Crossref | GoogleScholarGoogle Scholar | 22049739PubMed |

[98]  P. Verlicchi, E. Zambello, How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci. Total Environ. 2014, 470–471, 1281.
How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review.Crossref | GoogleScholarGoogle Scholar | 24252201PubMed |

[99]  P. A. Lara-Martín, E. González-Mazo, M. Petrovic, D. Barceló, B. J. Brownawell, Occurrence, distribution and partitioning of non-ionic surfactants and pharmaceuticals in the urbanized Long Island Sound estuary (NY). Mar. Pollut. Bull. 2014, 85, 710.
Occurrence, distribution and partitioning of non-ionic surfactants and pharmaceuticals in the urbanized Long Island Sound estuary (NY).Crossref | GoogleScholarGoogle Scholar | 24467856PubMed |

[100]  S. Yuan, X. Jiang, X. Xia, H. Zhang, S. Zheng, Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere 2013, 90, 2520.
Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWgu7rN&md5=224f67d9ff1fe5aa4bd9d733a336dd70CAS | 23228908PubMed |

[101]  B. J. Vanderford, S. A. Snyder, Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ. Sci. Technol. 2006, 40, 7312.
Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVSmu7k%3D&md5=737c0c6636d75c7be609258fbd144665CAS | 17180983PubMed |

[102]  P. C. Rúa-Gómez, A. A. Guedez, C. O. Ania, W. Püttmann, Upgrading of wastewater treatment plants through the use of unconventional treatment technologies: removal of lidocaine, tramadol, venlafaxine and their metabolites. Water 2012, 4, 650.
Upgrading of wastewater treatment plants through the use of unconventional treatment technologies: removal of lidocaine, tramadol, venlafaxine and their metabolites.Crossref | GoogleScholarGoogle Scholar |

[103]  K. H. Langford, M. Reid, K. V. Thomas, Multiresidue screening of prioritized human pharmaceuticals, illicit drugs and bactericides in sediments and sludge. J. Environ. Monit. 2011, 13, 2284.
Multiresidue screening of prioritized human pharmaceuticals, illicit drugs and bactericides in sediments and sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1yjt7Y%3D&md5=a534144b89d0b8149781e270e54109aeCAS | 21725567PubMed |

[104]  S. K. Behera, H. W. Kim, J.-E. Oh, H.-S. Park, Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 2011, 409, 4351.
Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyqtLrO&md5=0da3abaef59ff689591efd60cfb091c8CAS | 21807398PubMed |

[105]  J. P. Bagnall, S. E. Evans, M. T. Wort, A. T. Lubben, B. Kasprzyk-Hordern, Using chiral liquid chromatography–quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level. J. Chromatogr. A 2012, 1249, 115.
Using chiral liquid chromatography–quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSls7zK&md5=a1b6ffd13c0c5123e2135a89cc56c700CAS | 22749459PubMed |

[106]  B. Kasprzyk-Hordern, D. R. Baker, Enantiomeric profiling of chiral drugs in wastewater and receiving waters. Environ. Sci. Technol. 2012, 46, 1681.
Enantiomeric profiling of chiral drugs in wastewater and receiving waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFel&md5=1f09ce8c7f1edc7507029a172df0390cCAS | 22208427PubMed |

[107]  C. G. Daughton, Eco-directed sustainable prescribing: feasibility for reducing water contamination by drugs. Sci. Total Environ. 2014, 493, 392.
Eco-directed sustainable prescribing: feasibility for reducing water contamination by drugs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyktLbF&md5=5ea8776fc7dda64691307caeb99b7180CAS | 24956075PubMed |

[108]  E. Emke, S. Evans, B. Kasprzyk-Hordern, P. de Voogt, Enantiomer profiling of high loads of amphetamine and MDMA in communal sewage: a Dutch perspective. Sci. Total Environ. 2014, 487, 666.

[109]  J. Bagnall, L. Malia, A. Lubben, B. Kasprzyk-Hordern, Stereoselective biodegradation of amphetamine and methamphetamine in river microcosms. Water Res. 2013, 47, 5708.
Stereoselective biodegradation of amphetamine and methamphetamine in river microcosms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCktb7I&md5=b6d4e2196fd026c86015138795807649CAS | 23886544PubMed |

[110]  E. Zuccato, C. Chiabrando, S. Castiglioni, D. Calamari, R. Bagnati, S. Schiarea, R. Fanelli, Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse. Environ. Health 2005, 4, 14.
Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse.Crossref | GoogleScholarGoogle Scholar | 16083497PubMed |

[111]  C. G. Daughton, Illicit drugs in municipal sewage: proposed new non-intrusive tool to heighten public awareness of societal use of illicit/abused drugs and their potential for ecological consequences, in Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issue. ACS Symposium Series 791 (Eds C. G. Daughton, T. L. Jones-Lepp) 2001, pp. 348–364 (American Chemical Society: Washington, DC)10.1021/BK-2001-0791.CH020

[112]  D. R. Baker, L. Barron, B. Kasprzyk-Hordern, Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part A: chemical analysis and drug use estimates. Sci. Total Environ. 2014, 487, 629.
Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part A: chemical analysis and drug use estimates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Gj&md5=e3ec4ed1010e39414567a428b8b2bbadCAS | 24377678PubMed |

[113]  J. Bones, K. V. Thomas, B. Paull, Using environmental analytical data to estimate levels of community consumption of illicit drugs and abused pharmaceuticals. J. Environ. Monit. 2007, 9, 701.
Using environmental analytical data to estimate levels of community consumption of illicit drugs and abused pharmaceuticals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFKnu78%3D&md5=00e8fd30ca21a56d894ac9a91c9793daCAS | 17607391PubMed |

[114]  D. R. Baker, V. Očenášková, M. Kvicalova, B. Kasprzyk-Hordern, Drugs of abuse in wastewater and suspended particulate matter – further developments in sewage epidemiology. Environ. Int. 2012, 48, 28.
Drugs of abuse in wastewater and suspended particulate matter – further developments in sewage epidemiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlaksLbE&md5=38c73e711a12ce80eb4a0028ce042ea0CAS | 22832187PubMed |

[115]  European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Insights Series number 9. Assessing Illicit Drugs in Wastewater: Potential and Limitations of a New Monitoring Approach 2008 (Office for Official Publications of the European Communities: Luxembourg).

[116]  F. Y. Lai, C. Ort, C. Gartner, S. Carter, J. Prichard, P. Kirkbride, R. Bruno, W. Hall, G. Eaglesham, J. F. Mueller, Refining the estimation of illicit drug consumptions from wastewater analysis: co-analysis of prescription pharmaceuticals and uncertainty assessment. Water Res. 2011, 45, 4437.
Refining the estimation of illicit drug consumptions from wastewater analysis: co-analysis of prescription pharmaceuticals and uncertainty assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1altLs%3D&md5=a597165bd84387a2d35abe9d4a4c0e41CAS | 21745676PubMed |

[117]  C. Harman, M. Reid, K. V. Thomas, In situ calibration of a passive sampling device for selected illicit drugs and their metabolites in wastewater, and subsequent year-long assessment of community drug usage. Environ. Sci. Technol. 2011, 45, 5676.
In situ calibration of a passive sampling device for selected illicit drugs and their metabolites in wastewater, and subsequent year-long assessment of community drug usage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVOks7s%3D&md5=1279e83d6bcd6889b3f87d0b3b934046CAS | 21648435PubMed |

[118]  S. Karolak, T. Nefau, E. Bailly, A. Solgadi, Y. Levi, Estimation of illicit drugs consumption by wastewater analysis in Paris area (France). Forensic Sci. Int. 2010, 200, 153.
Estimation of illicit drugs consumption by wastewater analysis in Paris area (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVagsbg%3D&md5=07f773becfc8a44f6b0bd4b6aa6ff8f4CAS | 20447786PubMed |

[119]  B. Subedi, K. Kannan, Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York State and estimation of illicit drug usage in communities through wastewater analysis. Environ. Sci. Technol. 2014, 48, 6661.
Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York State and estimation of illicit drug usage in communities through wastewater analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosFCgsbw%3D&md5=4dc2be28cd0b49d42c1965a6b9137714CAS | 24865581PubMed |

[120]  J. Li, L. Hou, P. Du, J. Yang, K. Li, Z. Xu, C. Wang, H. Zhang, X. Li, Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis. Sci. Total Environ. 2014, 490, 724.
Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKktLvO&md5=062cc07c31847423a228e2875adf2890CAS | 24907608PubMed |

[121]  M. Östman, J. Fick, E. Näsström, R. H. Lindberg, A snapshot of illicit drug use in Sweden acquired through sewage water analysis. Sci. Total Environ. 2014, 472, 862.
A snapshot of illicit drug use in Sweden acquired through sewage water analysis.Crossref | GoogleScholarGoogle Scholar |

[122]  U. Khan, A. L. N. van Nuijs, J. Li, W. Maho, P. Du, K. Li, L. Hou, J. Zhang, X. Meng, X. Li, A. Covaci, Application of a sewage-based approach to assess the use of ten illicit drugs in four Chinese megacities. Sci. Total Environ. 2014, 487, 710.
Application of a sewage-based approach to assess the use of ten illicit drugs in four Chinese megacities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Clsb8%3D&md5=5c3b195a605b073a95239e7ba55d8bb2CAS |

[123]  V. Yargeau, B. Taylor, H. Li, A. Rodayan, C. D. Metcalfe, Analysis of drugs of abuse in wastewater from two Canadian cities. Sci. Total Environ. 2014, 487, 722.
Analysis of drugs of abuse in wastewater from two Canadian cities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKnsL7O&md5=cde9da32fd5a6f91ff1701335a2e29bbCAS | 24321387PubMed |

[124]  D. A. Damien, N. Thomas, P. Hélène, K. Sara, L. Yves, First evaluation of illicit and licit drug consumption based on wastewater analysis in Fort de France urban area (Martinique, Caribbean), a transit area for drug smuggling. Sci. Total Environ. 2014, 490, 970.
First evaluation of illicit and licit drug consumption based on wastewater analysis in Fort de France urban area (Martinique, Caribbean), a transit area for drug smuggling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKktbvI&md5=83ad4dbaeea7b746a2dfbbbb7a6f220dCAS | 24914526PubMed |

[125]  A. Kankaanpää, K. Ariniemi, M. Heinonen, K. Kuoppasalmi, T. Gunnar, Use of illicit stimulant drugs in Finland: a wastewater study in ten major cities. Sci. Total Environ. 2014, 487, 696.
Use of illicit stimulant drugs in Finland: a wastewater study in ten major cities.Crossref | GoogleScholarGoogle Scholar | 24331163PubMed |

[126]  H. E. Jones, M. Hickman, B. Kasprzyk-Hordern, N. J. Welton, D. R. Baker, A. E. Ades, Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part B: placing back-calculations in a formal statistical framework. Sci. Total Environ. 2014, 487, 642.
Illicit and pharmaceutical drug consumption estimated via wastewater analysis. Part B: placing back-calculations in a formal statistical framework.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlOkurs%3D&md5=193b6bc6c68eb4c9ebc68b8a181cfc3fCAS | 24636801PubMed |

[127]  I. Senta, I. Krizman, M. Ahel, S. Terzic, Assessment of stability of drug biomarkers in municipal wastewater as a factor influencing the estimation of drug consumption using sewage epidemiology. Sci. Total Environ. 2014, 487, 659.
Assessment of stability of drug biomarkers in municipal wastewater as a factor influencing the estimation of drug consumption using sewage epidemiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1erug%3D%3D&md5=47c46d82f4610ad146d0fe59f0532ca3CAS | 24411995PubMed |

[128]  B. G. Plósz, M. J. Reid, M. Borup, K. H. Langford, K. V. Thomas, Biotransformation kinetics and sorption of cocaine and its metabolites and the factors influencing their estimation in wastewater. Water Res. 2013, 47, 2129.
Biotransformation kinetics and sorption of cocaine and its metabolites and the factors influencing their estimation in wastewater.Crossref | GoogleScholarGoogle Scholar | 23453589PubMed |

[129]  S. Castiglioni, L. Bijlsma, A. Covaci, E. Emke, F. Hernández, M. Reid, C. Ort, K. V. Thomas, A. L. N. van Nuijs, P. de Voogt, E. Zuccato, Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers. Environ. Sci. Technol. 2013, 47, 1452.
| 1:CAS:528:DC%2BC38XhvVOrs7nI&md5=ac90b44c3fda78535561a6ec6c947d26CAS | 23259772PubMed |

[130]  U. Khan, J. A. Nicell, Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol. Sci. Total Environ. 2012, 421–422, 144.
Sewer epidemiology mass balances for assessing the illicit use of methamphetamine, amphetamine and tetrahydrocannabinol.Crossref | GoogleScholarGoogle Scholar | 22361587PubMed |

[131]  A. L. N. van Nuijs, K. Abdellati, L. Bervoets, R. Blust, P. G. Jorens, H. Neels, A. Covaci, The stability of illicit drugs and metabolites in wastewater, an important issue for sewage epidemiology? J. Hazard. Mater. 2012, 239–240, 19.
The stability of illicit drugs and metabolites in wastewater, an important issue for sewage epidemiology?Crossref | GoogleScholarGoogle Scholar |

[132]  A. L. N. van Nuijs, J.-F. Mougel, I. Tarcomnicu, L. Bervoets, R. Blust, P. G. Jorens, H. Neels, A. Covaci, Sewage epidemiology – a real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium. Environ. Int. 2011, 37, 612.
Sewage epidemiology – a real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Wnu7s%3D&md5=474ea952dae192bf8775669b9af5fb68CAS |

[133]  M. J. Reid, J. A. Baz-Lomba, Y. Ryu, K. V. Thomas, Using biomarkers in wastewater to monitor community drug use: a conceptual approach for dealing with new psychoactive substances. Sci. Total Environ. 2014, 487, 651.
Using biomarkers in wastewater to monitor community drug use: a conceptual approach for dealing with new psychoactive substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotlWluw%3D%3D&md5=576ff3ce93366e63f0c1640ba7840256CAS | 24412561PubMed |

[134]  K. V. Thomas, L. Bijlsma, S. Castiglioni, A. Covaci, E. Emke, R. Grabic, F. Hernández, S. Karolak, B. Kasprzyk-Hordern, R. H. Lindberg, M. Lopez de Alda, A. Meierjohann, C. Ort, Y. Pico, J. B. Quintana, M. Reid, J. Rieckermann, S. Terzic, A. L. N. van Nuijs, P. de Voogt, Comparing illicit drug use in 19 European cities through sewage analysis. Sci. Total Environ. 2012, 432, 432.
Comparing illicit drug use in 19 European cities through sewage analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCmtr%2FO&md5=2fbc2cb3f840631002ecd490850c2c3cCAS | 22836098PubMed |

[135]  D. Gerrity, R. A. Trenholm, S. A. Snyder, Temporal variability of pharmaceuticals and illicit drugs in wastewater and the effects of a major sporting event. Water Res. 2011, 45, 5399.
Temporal variability of pharmaceuticals and illicit drugs in wastewater and the effects of a major sporting event.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WltLzL&md5=3cb39064024c0b5ff137ce303a0a7523CAS | 21920575PubMed |

[136]  M. J. Reid, K. H. Langford, J. Mørland, K. V. Thomas, Quantitative assessment of time-dependent drug-use trends by the analysis of drugs and related metabolites in raw sewage. Drug Alcohol Depend. 2011, 119, 179.
Quantitative assessment of time-dependent drug-use trends by the analysis of drugs and related metabolites in raw sewage.Crossref | GoogleScholarGoogle Scholar | 21737215PubMed |

[137]  S. Castiglioni, K. V. Thomas, B. Kasprzyk-Hordern, L. Vandam, P. Griffiths, Testing wastewater to detect illicit drugs: state of the art, potential and research needs. Sci. Total Environ. 2014, 487, 613.
Testing wastewater to detect illicit drugs: state of the art, potential and research needs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yru77O&md5=f135c6cef6d91c3ea7743a78470a2fbfCAS | 24963530PubMed |

[138]  K. P. Singh, P. Rai, A. K. Singh, P. Verma, S. Gupta, Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environ. Monit. Assess. 2014, 186, 6663.
Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFeqsrvF&md5=c2b96d8ec6de6f440ee3e61b9e6ac01bCAS | 25004851PubMed |

[139]  R. Bruno, W. Hall, K. P. Kirkbride, F. Y. Lai, J. W. O’Brien, J. Prichard, P. K. Thai, J. F. Mueller, Commentary on Ort et al. What next to deliver on the promise of large scale sewage-based drug epidemiology? Addiction 2014, 109, 1353.
Commentary on Ort et al. What next to deliver on the promise of large scale sewage-based drug epidemiology?Crossref | GoogleScholarGoogle Scholar | 25041205PubMed |

[140]  P. Vazquez-Roig, B. Kasprzyk-Hordern, C. Blasco, Y. Picó, Stereoisomeric profiling of drugs of abuse and pharmaceuticals in wastewaters of Valencia (Spain). Sci. Total Environ. 2014, 494–495, 49.
Stereoisomeric profiling of drugs of abuse and pharmaceuticals in wastewaters of Valencia (Spain).Crossref | GoogleScholarGoogle Scholar | 25029504PubMed |

[141]  J. Prichard, W. Hall, P. de Voogt, E. Zuccato, Sewage epidemiology and illicit drug research: the development of ethical research guidelines. Sci. Total Environ. 2014, 472, 550.
Sewage epidemiology and illicit drug research: the development of ethical research guidelines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Gmtbk%3D&md5=cd3caa0881174d15100b211c33119737CAS | 24317162PubMed |

[142]  E. Vuori, M. Happonen, M. Gergov, T. Nenonen, A. Järvinen, R. A. Ketola, R. Vahala, Wastewater analysis reveals regional variability in exposure to abused drugs and opioids in Finland. Sci. Total Environ. 2014, 487, 688.
Wastewater analysis reveals regional variability in exposure to abused drugs and opioids in Finland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGmu77M&md5=146efe2a6d5d4a7b9ff9e8feb108809dCAS | 24275228PubMed |

[143]  P. J. Phillips, S. G. Smith, D. W. Kolpin, S. D. Zaug, H. T. Buxton, E. T. Furlong, K. Esposito, B. Stinson, Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environ. Sci. Technol. 2010, 44, 4910.
Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFKmtb0%3D&md5=4c7de2a49a00324958d04d35b7a3f632CAS | 20521847PubMed |

[144]  T. L. Jones-Lepp, D. Alvarez, J. Petty, J. Huggins, Polar organic chemical integrative sampling (POCIS) and LC-ES/ITMS for assessing selected prescription and illicit drugs in treated sewage effluents. Arch. Environ. Contam. Toxicol. 2004, 47, 427.
Polar organic chemical integrative sampling (POCIS) and LC-ES/ITMS for assessing selected prescription and illicit drugs in treated sewage effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCmsLg%3D&md5=0784412620c083a8dbbb997b760dddebCAS | 15499492PubMed |

[145]  S. L. Bartelt-Hunt, D. D. Snow, T. Damon, J. Shockley, K. Hoagland, The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environ. Pollut. 2009, 157, 786.
The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFehs70%3D&md5=84b4cf12e53c8a705673d64656ac4839CAS | 19110357PubMed |

[146]  C. J. Banta-Green, J. A. Field, A. C. Chiaia, D. L. Sudakin, L. Power, L. De Montigny, The spatial epidemiology of cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) use: a demonstration using a population measure of community drug load derived from municipal wastewater. Addiction 2009, 104, 1874.
The spatial epidemiology of cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) use: a demonstration using a population measure of community drug load derived from municipal wastewater.Crossref | GoogleScholarGoogle Scholar | 19624572PubMed |

[147]  T. L. Jones-Lepp, C. A. Sanchez, D. A. Alvarez, D. Wilson, R. Taniguchi-Fu, Point sources of emerging contaminants along the Colorado River Basin: impact on water use and reuse in the arid South-West. Sci. Total Environ. 2012, 430, 237.
Point sources of emerging contaminants along the Colorado River Basin: impact on water use and reuse in the arid South-West.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1ClsL4%3D&md5=7ddc8e7083ab9be8f1327a371381fae0CAS | 22684090PubMed |

[148]  B. Loganathan, M. Phillips, H. Mowery, T. L. Jones-Lepp, Contamination profiles and mass loadings of select macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant. Chemosphere 2009, 75, 70.
Contamination profiles and mass loadings of select macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVGhs7o%3D&md5=31668ebb162a2934779927d7e6c46bc7CAS | 19121838PubMed |

[149]  E. M. Peckham, J. R. Traynor, Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague–Dawley rats. J. Pharmacol. Exp. Ther. 2006, 316, 1195.
Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague–Dawley rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Sgs70%3D&md5=fc763dfa773607b1de834b77ea702d6eCAS | 16291875PubMed |

[150]  Pyrrolidine, 1,5-dimethyl-2-ethylidene-3,3-diphenyl 2015 (Royal Society of Chemistry). Available at http://www.chemspider.com/Chemical-Structure.4526936.html [verified 4 March 2016].