Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Effects of long-term ionic and osmotic stress conditions on photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803

Saowarath Jantaro A B , Paula Mulo A , Tove Jansén A , Aran Incharoensakdi B and Pirkko Mäenpää A C
+ Author Affiliations
- Author Affiliations

A Department of Biology, University of Turku, FIN-20014 Turku, Finland.

B Program of Biotechnology and Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

C Corresponding author. Email: pirmae@utu.fi

Functional Plant Biology 32(9) 807-815 https://doi.org/10.1071/FP04219
Submitted: 20 November 2004  Accepted: 3 May 2005   Published: 26 August 2005

Abstract

Salinity is considered to be one of the most severe problems in worldwide agricultural production, but the published investigations give contradictory results of the effect of ionic and osmotic stresses on photosynthesis. In the present study, long-term effects of both ionic and osmotic stresses, especially on photosynthesis, were investigated using the moderately halotolerant cyanobacterium Synechocystis sp. PCC 6803. Our results show that the PSII activity and the photosynthetic capacity tolerated NaCl but a high concentration of sorbitol completely inhibited both activities. In line with these results, we show that the amount of the D1 protein of PSII was decreased under severe osmotic stress, whereas the levels of PsaA / B and NdhF3 proteins remained unchanged. However, high concentrations of sorbitol stress led to a drastic decrease of both psbA (encoding D1) and psaA (encoding PsaA) transcripts, suggesting that severe osmotic stress may abolish the tight coordination of transcription and translation normally present in bacteria, at least in the case of the psaA gene. Taken together, our results indicate that the osmotic stress component is more detrimental to photosynthesis than the ionic one and, furthermore, under osmotic stress, the D1 protein appears to be the target of this stress treatment.

Keywords: ionic stress, osmotic stress, photosynthesis, Synechocystis sp. PCC 6803.


Acknowledgments

The NdhF3 antibody was kindly provided by Prof Eva-Mari Aro, and the PSI complex antibody by Dr Torill Hundal. This work was supported by the Thailand Research Fund through the Royal Golden Jubilee PhD program (PHD / 0171 / 2542) to S Jantaro and A Incharoensakdi and by the Academy of Finland to P Mäenpää.


References


Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of the National Academy of Sciences USA 96, 5862–5867.
Crossref | GoogleScholarGoogle Scholar | open url image1

Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000a) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology 123, 1047–1056.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Allakhverdiev SI, Sakamoto A, Nishiyama Y, Murata N (2000b) Inactivation of photosystem I and II in response to osmotic stress in Synechococcus. Contribution of water channels. Plant Physiology 122, 1201–1208.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis.  Plant Physiology 130, 1443–1453.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta 1143, 113–134.
PubMed |
open url image1

Baker NR (1991) Possible role of photosystem II in environmental perturbations of photosynthesis. Physiologia Plantarum 81, 563–570.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology 58, 419–423.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bergantino E, Brunetta A, Segalla A, Szabo I, Carbonera DC, Bordignon E, Rigoni F, Giacometti GM (2002) Structural and functional role of the PsbH protein in resistance to light in Synechocystis PCC 6803. Functional Plant Biology 29, 1181–1187.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Science 140, 103–125.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiology 87, 547–550. open url image1

Erber WWA, Nitschmann WH, Muchl R, Peschek GA (1986) Endogenous energy supply to the plasma membrane of dark aerobic cyanobacterium Anacystis nidulans: ATP-independent efflux of H+ and Na+ from respiring cells. Archives of Biochemistry and Biophysics 247, 28–39.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology 31, 149–190.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hagemann M, Erdmann N (1994) Activation and pathway of glycosylglycerol synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 140, 1427–1431. open url image1

Hagemann, M ,  and  Erdmann, N (1997). Environmental stresses. In ‘Cyanobacterial nitrogen metabolism and environmental biotechnology’. pp. 156–221. (Springer-Verlag: Heidelberg)

Herz K, Vomont S, Padan E, Berche P (2003) Roles of NhaA, NhaB, and NhaD Na+ / H+ antiporters in survival of Vibrio cholerae in a saline environment. Journal of Bacteriology 185, 1236–1244.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hihara, Y ,  and  Sonoike, K (2001). Regulation, inhibition and protection of photosystem I. In ‘Advances in photosynthesis and respiration. Vol. 11. Regulation of photosynthesis’. pp. 507–531. (Kluwer Academic Publishers: The Netherlands)

Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. The Plant Cell 13, 793–806.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ikeuchi M, Tabata S (2001) Synechocystis sp. PCC 6803 — a useful tool in the study of genetics of cyanobacteria. Photosynthesis Research 70, 73–83.
Crossref | GoogleScholarGoogle Scholar | open url image1

Incharoensakdi A, Wutipraditkul N (1999) Accumulation of glycine betaine and its synthesis from radioactive precursors under salt-stress in the cyanobacterium Aphanothece halophytica.  Journal of Applied Phycology 11, 515–523.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jantaro S, Mäenpää P, Mulo P, Incharoensakdi A (2003) Content and biosynthesis of polyamines in salt and osmotically stresses cells of Synechocystis sp. PCC 6803. FEMS Microbiology Letters 228, 129–135.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jeanjean R, Bédu S, Havaux M, Matthijs HCP, Joset F (1998) salt-induced photosystem I cyclic electron transfer restores growth on low inorganic carbon in a type 1 NAD(P)H dehydrogenase deficient mutant of Synechocystis PCC 6803. FEMS Microbiology Letters 167, 131–137.
Crossref | GoogleScholarGoogle Scholar | open url image1

Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiologia Plantarum 96, 738–744.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochemical and Biophysical Research Communications 290, 339–348.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant and Cell Physiology 37, 169–173. open url image1

Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes.  Journal of Bacteriology 176, 426–431.
PubMed |
open url image1

Loreto F, Centritto M, Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant, Cell and Environment 26, 595–601.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lu C, Vonshak A (1999) Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis.  New Phytologist 141, 231–239.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lu C, Zhang J (1999) Effects of salt stress on PSII function and photoinhibition in the cyanobacterium Spirulina platensis.  Journal of Plant Physiology 155, 740–745. open url image1

Lu C, Vonshak A (2002) Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum 114, 405–413.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lu C, Qiu N, Wang B, Zhang J (2003) Salinity treatment shows no effects on photosystem II photochemistry, but increase the resistance of photosystem II to heat stress in halophyte Suaeda salsa.  Journal of Experimental Botany 54, 851–860.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proceedings of the National Academy of Sciences USA 100, 9061–9066.
Crossref | GoogleScholarGoogle Scholar | open url image1

Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M (2004) Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiology 136, 3290–3300.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mohamed A, Jansson C (1989) Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Molecular Biology 13, 693–700.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Morales F, Abadia A, Gomez-Aparis J, Abadia J (1992) Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiologia Plantarum 86, 419–426.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mühlenhoff U, Haehnel W, Witt H, Herrmann RG (1993) Genes encoding eleven subunits of photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127, 71–78.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell and Environment 25, 239–250.
Crossref | GoogleScholarGoogle Scholar | open url image1

Neale PJ, Melis A (1989) Salinity-stress enhances photoinhibition of photosystem II in Chlamydomonas reinhardtii.  Journal of Plant Physiology 134, 619–622. open url image1

Page-Sharp M, Behm CA, Smith GD (1998) Cyanophycin and glycogen synthesis in a cyanobacterial Scytonema species in response to salt stress. FEMS Microbiology Letters 160, 11–15.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sambrook, J ,  and  Russell, DW (2001). ‘Molecular cloning. A laboratory manual.’ (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY)

Sazuka T, Yamaguchi M, Ohara O (1999) Cyano2Dbase updated: linkage of 234 protein spots to corresponding genes through N-terminal microsequencing. Electrophoresis 20, 2160–2171.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Shibata M, Ohkawa H, Katoh H, Shimoyama M, Ogawa T (2002) Two CO2 uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp. strain PCC 6803. Functional Plant Biology 29, 123–129.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smart LB, McIntosh L (1991) Expression of photosynthesis genes in the cyanobacterium Synechocystis sp. PCC 6803: psaA–psaB and psbA transcripts accumulate in dark-grow cells. Plant Molecular Biology 17, 959–971.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stanier G (1988) Fine structure of cyanobacteria. Methods in Enzymology 167, 157–172. open url image1

Takabe T, Incharoensakdi A, Arakawa K, Yokota S (1988) CO2 fixation and Rubisco content increase in a highly halotolerant cyanobacterium, Aphanothece halophytica, grown in high salinity. Plant Physiology 88, 1120–1124. open url image1

Tanaka Y, Katada S, Ishikawa H, Ogawa T, Takabe T (1997) Electron flow from NAD(P)H dehydrogenase to photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology 38, 1311–1318. open url image1

Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91, 503–527.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tyystjärvi T, Aro E-M, Jansson C, Mäenpää P (1994) Changes of amino acid sequence in PEST-like area and QEEET motif affect degradation rate of D1 polypeptide in photosystem II. Plant Molecular Biology 25, 517–526.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

van der Staay GWM, Moon-van der Staay SY, Garczarek L, Partensky F (2000) Rapid evolutionary divergence of photosystem I core subunits PsaA and PsaB in the marine prokaryote Prochlorococcus.  Photosynthesis Research 65, 131–139.
Crossref | GoogleScholarGoogle Scholar | open url image1

Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T (2002) Overexpression of a Na+ / H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proceedings of the National Academy of Sciences USA 99, 4109–4114.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang B, Lüttge U, Ratajczak R (2004) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. Journal of Plant Physiology 161, 285–293.
Crossref | PubMed |
open url image1

Wang Y, Meng Y-L, Ishikawa H, Hibino T, Tanaka Y, Nii N, Takabe T (1999) Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolour.  Plant and Cell Physiology 40, 668–674. open url image1

Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T, Aro E-M (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3 / NdhF3 / CupA / Sll1735 in Synechocystis sp PCC 6803. The Plant Cell 16, 3326–3340.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zuther E, Schubert H, Hagemann M (1998) Mutation of a gene encoding a putative glycoprotease leads to reduced salt tolerance, altered pigmentation, and cyanophycin accumulation in the cyanobacterium Synechocystis sp. strain PCC 6803. Journal of Bacteriology 180, 1715–1722.
PubMed |
open url image1