Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Cell-line-dependent sorting of recombinant phytase in cell cultures of Medicago truncatula

Pablo González-Melendi A , Ana Sofia Pires B and Rita Abranches B C
+ Author Affiliations
- Author Affiliations

A Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-INIA, Parque Científico y Tecnológico de la U.P.M. Campus de Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain.

B Plant Cell Biology Laboratory, Instituto de Tecnologia Quimica e Biologica, ITQB-UNL, Av. Republica, Apartado 127, 2781-901 Oeiras, Portugal.

C Corresponding author. Email: ritaa@itqb.unl.pt

Functional Plant Biology 36(5) 431-441 https://doi.org/10.1071/FP08260
Submitted: 10 October 2008  Accepted: 2 March 2009   Published: 6 May 2009

Abstract

Plant cell cultures as platforms for recombinant protein production are favoured over other systems because they combine the benefits of plants (low cost of production, low biosecurity risk, conserved post-translational modifications) with those of controlled cell cultures. However, many factors that affect the correct synthesis and accumulation of the recombinant product still need to be determined; in particular, the trafficking route of the recombinant proteins is poorly understood. Suspension cell cultures of Medicago truncatula Gaertn. have been shown to offer a viable and highly efficient system for the production of a model glycoprotein – phytase from the fungus Aspergillus niger Tiegh. The present study investigated subcellular protein sorting by immunogold detection of recombinant phytase with an electron microscope in four independent Medicago cell cultures expressing phytase. Two lines contained a C-terminal KDEL targeting signal for retention in the endoplasmic reticulum (ER), and the other two did not and were expected to travel through the secretory route; a high and low expressor were examined for each variant of the protein. A differential subcellular location of phytase was found in the four transgenic lines studied. These differences account not only for the version of the recombinant protein (secreted or retained in the ER), but also for the different expression levels.

Additional keywords: molecular farming, subcellular targeting.


Acknowledgements

We thank MariCarmen Risueño (CIB-CSIC) for the facilities provided in her laboratory, M. Mercedes Lucas (CCMA-CSIC) for the use of TEM facilities and for scientific advice, and José María Seguí and Paul Anderson for comments. We also thank the EM service ‘Luis Bru’ of the Universidad Complutense de Madrid, Fernando Pinto and Sara Paniagua (EM service, CCMA-CSIC) and Carmen Terrón (EM service, CIB-CSIC) for technical support. P. González-Melendi was funded by the program ‘Ramón y Cajal’ from the Spanish Ministry of Education and Science. This work was funded by POCI/BIA-BCM/55762/2004 (FCT Portugal, POCI 2010, FEDER) and the Portuguese–Spanish bilateral action 2005–2006, Acção Integrada Luso-Espanhola E-63/05 (CRUP, Portugal) and Acción Integrada HP2004-0107 (Spanish Ministry of Education and Science, Spain).


References


Abranches R, Marcel S, Arcalis E, Altmann F, Fevereiro P, Stoger E (2005) Plants as bioreactors: a comparative study suggests that Medicago truncatula is a promising production system. Journal of Biotechnology 120, 121–134.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Abranches R, Arcalis E, Marcel S, Altmann F, Ribeiro-Pedro M, Rodriguez J, Stoger E (2008) Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta 227, 649–658.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Alvim FC, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC, Fontes EPB (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiology 126, 1042–1054.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Araújo SS, Duque AS, Santos DM, Fevereiro P (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell, Tissue and Organ Culture 78, 123–131.
Crossref | GoogleScholarGoogle Scholar | open url image1

Carolino SMB, Vaez JR, Irsigler AST, Valente MAS, Rodrigues LAZ, Fontes EPB (2003) Plant BiP gene family: differential expression, stress induction and protective role against physiological stresses. Brazilian Journal of Plant Physiology 15, 59–66.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

das Neves LO, Duque SRL, de Almeida JS, Fevereiro P (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. narbonensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Reports 18, 398–405.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends in Biotechnology 24, 426–432.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Drakakaki G, Marcel S, Arcalis E, Altmann F, González-Melendi P, Fischer R, Christou P, Stoger E (2006) The intracellular fate of recombinant phytase is tissue-dependent. Plant Physiology 141, 578–586.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Foresti O, Denecke J (2008) Intermediate organelles of the plant secretory pathway: identity and function. Traffic (Copenhagen, Denmark) 9, 1599–1612.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Frigerio L, Vine ND, Pedrazzini E, Hein MB, Wang F, Ma JK, Vitale A (2000) Assembly, secretion, and vacuolar delivery of a hybrid immunoglobulin in plants. Plant Physiology 123, 1483–1494.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Frigerio L, Pastres A, Prada A, Vitale A (2001) Influence of KDEL on the fate of trimeric or assembly-defective phaseolin: selective use of an alternative route to vacuoles. The Plant Cell 13, 1109–1126.
CAS | Crossref | PubMed |
open url image1

Gomord V, Denmat L-A, Fitchette-Lainé AC, Satiat-Jeunemaıtre B, Hawes C, Faye L (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. The Plant Journal 11, 313–325.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

González-Melendi P, Shaw P (2002) 3D gold in situ labelling in the EM. The Plant Journal 29, 237–243.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

González-Melendi P, Uyttewaal M, Morcillo CN, Hernández Mora JR, Fajardo S, Budar F, Lucas MM (2008) A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). Journal of Experimental Botany 59, 827–838.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hadlington JL, Santoro A, Nuttall J, Denecke J, Ma JK, Vitale A, Frigerio L (2003) The C-terminal extension of a hybrid immunoglobulin A/G heavy chain is responsible for its Golgi-mediated sorting to the vacuole. Molecular Biology of the Cell 14, 2592–2602.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Han Y, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Archives of Biochemistry and Biophysics 364, 83–90.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hanton SL, Matheson LA, Brandizzi F (2006) Seeking a way out: export of proteins from the plant endoplasmic reticulum. Trends in Plant Science 11, 335–343.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nature Biotechnology 22, 1415–1422.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Klein EM, Mascheroni L, Pompa A, Ragni L, Weimar T, Lilley KS, Dupree P, Vitale A (2006) Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues. The Plant Journal 48, 657–673.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kohli A, González-Melendi P, Abranches R, Capell T, Stöger E, Christou P (2006) The quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signaling & Behavior 1, 185–195. open url image1

Luo J, Ning T, Sun Y, Zhu J, Zhu Y, Lin Q, Yang D (2009) Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. Journal of Proteome Research 8, 829–837.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nature Reviews. Genetics 4, 794–805.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) Stress in recombinant protein producing yeasts. Journal of Biotechnology 113, 121–135.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nicholson L, González-Melendi P, Van Dolleweerd C, Tuck H, Perrin Y, Ma J, Fischer R, Christou P, Stoger E (2005) A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnology Journal 3, 115–127.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Pires AS, Cabral MG, Fevereiro P, Stoger E, Abranches R (2008) High levels of stable phytase accumulate in the culture medium of transgenic Medicago truncatula cell suspension cultures. Biotechnology Journal 3, 916–923.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tamura K, Yamada K, Shimada T, Hara-Nishimura I (2004) Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation. The Plant Journal 39, 393–402.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Torres E, González-Melendi P, Stöger E, Shaw P, Twyman R, Nicholson L, Vaquero C, Fischer R, Christou P, Perrin Y (2001) Native and artificial reticuloplasmins co-accumulate in distinct domains of the endoplasmic reticulum (ER) and in post-endoplasmic reticulum compartments. Plant Physiology 127, 1212–1223.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Triguero A, Cabrera G, Cremata JA, Yuen CT, Wheeler J, Ramirez NI (2005) Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnology Journal 3, 449–457.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1