Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Photosynthetic features of non-Kranz type C4 versus Kranz type C4 and C3 species in subfamily Suaedoideae (Chenopodiaceae)

Monica E. Smith A , Nouria K. Koteyeva B , Elena V. Voznesenskaya B , Thomas W. Okita C and Gerald E. Edwards A D
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.

B Laboratory of Anatomy and Morphology, V.L. Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov St. 2, St. Petersburg 197376, Russia.

C Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.

D Corresponding author. Email: edwardsg@wsu.edu

Functional Plant Biology 36(9) 770-782 https://doi.org/10.1071/FP09120
Submitted: 26 May 2009  Accepted: 17 July 2009   Published: 3 September 2009

Abstract

The objective of this study was to characterise photosynthesis in terrestrial non-Kranz (NK) C4 species, Bienertia sinuspersici Akhani and Suaeda aralocaspica (Bunge) Freitag & Schütze (formerly Borszczowia aralocaspica), compared with closely related Kranz type C4 Suaeda eltonica Iljin and Suaeda taxifolia Standley, and C3 species Suaeda heterophylla Bunge and Suaeda maritima Dumort in subfamily Suaedoideae (Chenopodiaceae). Traditional Kranz type C4 photosynthesis has several advantages over C3 photosynthesis under certain environmental conditions by suppressing photorespiration. The different photosynthetic types were evaluated under varying levels of CO2 and light at 25°C. Both NK and Kranz type species had C4 type CO2 compensation points (corrected for dark-type respiration) and half maximum saturation of photosynthesis at similar levels of atmospheric CO2 (average of 145 µbar for the C4 species v. 330 µbar CO2 for C3 species) characteristic of C4 photosynthesis. CO2 saturated rates of photosynthesis per unit chlorophyll was higher in the C3 (at ~2.5 current ambient CO2 levels) than the C4 species, which is likely related to their higher Rubisco content. The amount of Rubisco as a percentage of total protein was similar in NK and Kranz type species (mean 10.2%), but much lower than in the C3 species (35%). Light saturated rates of CO2 fixation per unit leaf area at 25°C and 340 µbar CO2 were higher in the Kranz species and the NK C4 S. aralocaspica than in the C3 species. In response to light at 340 µbar CO2, there was a difference in rates of photosynthesis per unit Rubisco with NK > Kranz > C3 species. There were no significant differences between the three photosynthetic types in maximum quantum yields, convexity of light response curves, and light compensation points at 25°C. The water use efficiency (CO2 fixed per water transpired) at 340 µbar CO2, 25°C and 1000 µmol quanta m–2 s–1 was on average 3-fold higher in the C4 (NK and Kranz) compared with the C3 species. The results show that the NK species have several C4 traits like the Kranz type species in subfamily Suaedoideae.

Additional keywords: Chenopodiaceae, C4 plants, gas exchange, photosynthesis.


Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants No. IBN-0236959 and IBN-0641232, and Civilian Research and Development Foundation Grant RB1–2829-ST-06. We thank the Franceschi Microscopy and Imaging Center of Washington State University for use of their facilities and staff assistance, O. Kiirats for advice on gas exchange, C. Cody for plant growth management, and Dr A. Cousins for discussion of the work.


References


Akhani H, Barroca J, Koteeva N, Voznesenskaya E, Franceschi V, Edwards G, Ghaffari SM, Ziegler H (2005) Bienertia sinuspersici (Chenopodiaceae): a new species from Southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Systematic Botany 30, 290–301.
Crossref | GoogleScholarGoogle Scholar | open url image1

Akhani H, Lara MV, Ghasemkhani M, Ziegler H, Edwards GE (2009) Does Bienertia cycloptera with the single-cell system of C4 photosynthesis exhibit a seasonal pattern of d13C values in nature similar to co-existing C4 Chenopodiaceae having the dual-cell (Kranz) system? Photosynthesis Research 99, 23–36.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Björkman O, Berry J (1973) High efficiency photosynthesis. Scientific American 229, 80–90. open url image1

Boyd CN, Franceschi VR, Chuong SDX, Akhani H, Kiirats O, Smith M, Edwards GE (2007) Flowers of Bienertia cycloptera and Suaeda aralocaspica (Chenopodiaceae) complete the life cycle performing single-cell C4 photosynthesis. Functional Plant Biology 34, 268–281.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165, 397–406.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Carolin RC, Jacobs SWL, Vesk M (1975) Leaf structure in Chenopodiaceae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 95, 226–255. open url image1

Chuong SDX, Franceschi VR, Edwards GE (2006) The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. The Plant Cell 18, 2207–2223.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Downton WJS, Tregunna EB (1968) Carbon dioxide compensation – its relation to photosynthetic carboxylation reaction, systematics of the Gramineae, and leaf anatomy. Canadian Journal of Botany 46, 207–215.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Edwards GE , Voznesenskaya E (In press) C4 photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In ‘Photosynthesis and related CO2 concentrating mechanisms’. (Eds A Raghavendra, RF Sage) (Kluwer: The Netherlands)

Edwards GE , Walker DA (1983) ‘C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis.’ (Blackwell Scientific Publications: Oxford)

Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annual Review of Plant Biology 55, 173–196.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Edwards GE , Voznesenskaya EV , Smith M , Koteyeva N , Park Y-I , Park JH , Kiirats O , Okita TW , Chuong SDX (2007) Breaking the Kranz paradigm in terrestrial C4 plants: does it hold promise for C4 rice? In ‘Charting new pathways to C4 rice’. (Eds JE Sheehy, PL Mitchell, B Hardy) pp. 249–273. (International Rice Research Institute, World Scientific: Los Banos, Philippines)

Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiology 59, 86–90.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ehleringer J, Pearcy RW (1983) Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiology 73, 555–559.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Evans JR , von Caemmerer S (2000) Would C4 rice produce more biomass than C3 rice? In ‘Redesigning rice photosynthesis to increase yield’. (Eds JE Sheehy, PL Mitchell, B Hardy) pp. 53–71. (IRRI and Elsevier Science: Makati City, Philippines)

Freitag H, Stichler W (2000) A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodiaceae. Plant Biology 2, 154–160.
Crossref | GoogleScholarGoogle Scholar | open url image1

Freitag H, Stichler W (2002) Bienertia cycloptera Bunge ex Boiss., Chenopodiaceae, another C4 plant without Kranz tissues. Plant Biology 4, 121–132.
Crossref | GoogleScholarGoogle Scholar | open url image1

Henderson S, von Caemmerer S, Farquhar GD (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Australian Journal of Plant Physiology 19, 263–285.
CAS |
open url image1

Idle D, Proctor C (1983) An integrating sphere leaf chamber. Plant, Cell & Environment 6, 437–439.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. International Journal of Plant Sciences 164, 959–986.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kapralov MV, Akhani H, Voznesenskaya E, Edwards G, Franceschi VR, Roalson EH (2006) Phylogenetic relationships in the Salicornioideae/Suaedoideae/Salsoloideae s.l. (Chenopodiaceae) clade and a clarification of the phylogenetic position of Bienertia and Alexandra using multiple DNA sequence datasets. Systematic Botany 31, 571–585. open url image1

Krenzer EG, Moss DN, Crookston RK (1975) Carbon dioxide compensation points of flowering plants. Plant Physiology 56, 194–206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ku MSB, Schmitt MR, Edwards GE (1979) Quantitative determination of RuBP carboxylase-oxygenase protein in leaves of several C3 and C4 plants. Journal of Experimental Botany 30, 89–98.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kubásek J, Šetlík J, Dwyer S, Šantrůček J (2007) Light and growth temperature alter carbon isotope discrimination and estimated bundle sheath leakiness in C4 grasses and dicots. Photosynthesis Research 91, 47–58.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kubien DS, Sage RF (2004) Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudes. Plant, Cell & Environment 27, 907–916.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Lal A, Edwards GE (1995) Maximum quantum yields of O2 evolution in C4 plants under high CO2. Plant & Cell Physiology 36, 1311–1317.
CAS |
open url image1

Landsberg JJ, Ludlow MM (1970) A technique for determining resistance to mass transfer through the boundary layers of plants with complex structure. Journal of Applied Ecology 7, 187–192.
Crossref | GoogleScholarGoogle Scholar | open url image1

Long SP (1999) Environmental responses. In ‘C4 plant biology’. (Eds RF Sage, RK Monson) pp. 215–249. (Academic Press: San Diego, CA)

Middleton EM, Chan SS, Mesarch MA, Walter-Shea EA (1996) A revised measurement methodology for spectral optical properties of conifer needles. International Geoscience and Remote Sensing Symposium (IGARSS ’96) Digest 2, 1005–1009.
Crossref |
open url image1

Ögren E (1993) Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiology 101, 1013–1019.
PubMed |
open url image1

Peek MS, Russek-Cohen E, Wait DA, Forseth IN (2002) Physiological response curve analysis using nonlinear mixed models. Oecologia 132, 175–180.
Crossref | GoogleScholarGoogle Scholar | open url image1

Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of the chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta 975, 384–394.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sage RF (1999) Why C4 photosynthesis? In ‘C4 plant biology’. (Eds RF Sage, RK Monson) pp. 3–16. (Academic Press: San Diego, CA)

Sage RF (2002a) C4 photosynthesis in terrestrial plants does not require Kranz anatomy. Trends in Plant Science 7, 283–285.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sage RF (2002b) Variation in the k(cat) of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. Journal of Experimental Botany 53, 609–620.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology 85, 355–359.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schmitt MR, Edwards GE (1981) Photosynthetic capacity and nitrogen use efficiency of maize, wheat, and rice: a comparison between C3 and C4 plants. Journal of Experimental Botany 32, 459–466.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Schütze P, Freitag H, Weising K (2003) An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr. (Chenopodiaceae). Plant Systematics and Evolution 239, 257–286.
Crossref | GoogleScholarGoogle Scholar | open url image1

Seemann JR, Badger MR, Berry JA (1984) Variations in the specific activity of ribulose-1,5-bisphosphate carboxylase between species utilizing differing photosynthetic pathways. Plant Physiology 74, 791–794.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tregunna EB, Downton WJS (1967) Carbon dioxide compensation in members of the Amaranthaceae and some related families. Canadian Journal of Botany 45, 2385–2387.
Crossref | GoogleScholarGoogle Scholar | open url image1

von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynthesis Research 77, 191–207.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414, 543–546.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). The Plant Journal 31, 649–662.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Voznesenskaya EV, Chuong S, Koteyeva N, Franceschi VR, Freitag H, Edwards GE (2007) Structural, biochemical and physiological characterization of C4 photosynthesis in species having two vastly different types of Kranz anatomy in genus Suaeda (Chenopodiaceae). Plant Biology 9, 745–757.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Voznesenskaya EV, Akhani H, Koteyeva NK, Chuong SDX, Roalson EH, Kiirats O, Franceschi VR, Edwards GE (2008) Structural, biochemical and physiological characterization of photosynthesis in two C4 subspecies of Tecticornia indica and the C3 species Tecticornia pergranulata (Chenopodiaceae). Journal of Experimental Botany 59, 1715–1734.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhu G, Jensen RG (1990) Status of the substrate binding sites of Ribulose bisphosphate carboxylase as determined with 2-C-carboxyarabinitol 1,5-bisphosphate. Plant Physiology 93, 244–249.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1