CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |         Contents Vol 40(3)

AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis

Baohong Zou A B D, Zhenhua Jia C D, Shuangmei Tian A D, Xiaomeng Wang A, Zhenhua Gou A, Beibei Lü A and Hansong Dong A E

A State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing Agricultural University, Jiangsu, 210095, China.
B Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.
C Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei 050051, China.
D These authors contributed equally to this work.
E Corresponding author. Email: hsdong@njau.edu.cn

Functional Plant Biology 40(3) 304-313 http://dx.doi.org/10.1071/FP12253
Submitted: 26 May 2012  Accepted: 17 October 2012   Published: 19 November 2012


 
PDF (802 KB) $25
 Export Citation
 Print
  
Abstract

Plant MYB transcription factors are implicated in resistance to biotic and abiotic stresses. Here, we demonstrate that an R2-R3 MYB transcription factor, AtMYB44, plays a role in the plant defence response to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). The expression of AtMYB44 was upregulated upon pathogen infection and treatments with defence-related phytohormones. Transgenic plants overexpressing AtMYB44 (35S-Ms) exhibited greater levels of PR1 gene expression, cell death, callose deposition and hydrogen peroxide (H2O2) accumulation in leaves infected with PstDC3000. Consequently, 35S-M lines displayed enhanced resistance to PstDC3000. In contrast, the atmyb44 T-DNA insertion mutant was more susceptible to PstDC3000 and exhibited decreased PR1 gene expression upon infection. Using double mutants constructed via crosses of 35S-M lines with NahG transgenic plants and nonexpressor of pathogenesis-related genes1 mutant (npr11), we demonstrated that the enhanced PR1 gene expression and PstDC3000 resistance in 35S-M plants occur mainly through the salicylic acid signalling pathway.

Additional keywords: defense responses, MYB, pathogens, stress.


References

Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell 9, 1859–1868.

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15, 63–78.
CrossRef | CAS |

Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry 281, 37636–37645.
CrossRef | CAS |

Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92, 773–784.
CrossRef | CAS |

Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nature Immunology 6, 973–979.
CrossRef | CAS |

Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Molecular Biology 69, 473–488.
CrossRef | CAS |

Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology 10, 335–341.
CrossRef | CAS |

Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9, 1573–1584.
CrossRef | CAS |

Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63.
CrossRef | CAS |

Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLOS Genetics 5, e1000440
CrossRef |

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16, 735–743.
CrossRef | CAS |

Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences 18, 547–575.
CrossRef | CAS |

Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology 1, 316–323.
CrossRef | CAS |

Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. The Plant Journal 20, 207–215.
CrossRef | CAS |

Durrant WE, Dong X (2004) Systemic acquired resistance. Annual Review of Phytopathology 42, 185–209.
CrossRef | CAS |

Erb M, Glauser G (2010) Family business: multiple members of major phytohormone classes orchestrate plant stress responses. Chemistry 16, 10280–10289.
CrossRef | CAS |

Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends in Plant Science 17, 250–259.
CrossRef | CAS |

Friedrich L, Vernooij B, Gaffney T, Morse A, Ryals J (1995) Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Molecular Biology 29, 959–968.
CrossRef | CAS |

Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43, 205–227.
CrossRef | CAS |

Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. Journal of Experimental Botany 52, 1721–1730.
CrossRef | CAS |

Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology 133, 170–181.
CrossRef | CAS |

Hu J, Barlet X, Deslandes L, Hirsch J, Feng DX, Somssich I, Marco Y (2008) Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PLoS One 3, e2589

Huang J, Schmelz EA, Alborn H, Engelberth J, Tumlinson JH (2005a) Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: the role of ethylene in Pseudomonas syringae infected tobacco. Journal of Chemical Ecology 31, 439–459.
CrossRef | CAS |

Huang Z, Yeakley JM, Garcia EW, Holdridge JD, Fan JB, Whitham SA (2005b) Salicylic acid-dependent expression of host genes in compatible Arabidopsis–virus interactions. Plant Physiology 137, 1147–1159.
CrossRef | CAS |

Jia Z, Zou B, Wang X, Qiu J, Ma H, Gou Z, Song S, Dong H (2010) Quercetin-induced H2O2 mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 396, 522–527.
CrossRef | CAS |

Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiology 42, 1265–7123.
CrossRef | CAS |

Jones JD, Dangl JL (2006) The plant immune system. Nature 444, 323–329.
CrossRef | CAS |

Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD, Cheong JJ (2007) Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports 26, 1053–1063.
CrossRef | CAS |

Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology 146, 623–635.
CrossRef | CAS |

Jung C, Shim JS, Seo JS, Lee HY, Kim CH, Choi YD, Cheong JJ (2010) Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana. Molecules and Cells 29, 71–76.
CrossRef | CAS |

Kachroo A, Kachroo P (2007) Salicylic acid-, jasmonic acid- and ethylene-mediated regulation of plant defense signaling. Genetic Engineering 28, 55–83.
CrossRef | CAS |

Kirik V, Kolle K, Misera S, Baumlein H (1998) Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Molecular Biology 37, 819–827.
CrossRef | CAS |

Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proceedings of the National Academy of Sciences of the United States of America 97, 8849–8855.
CrossRef | CAS |

Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. The Plant Journal 16, 263–276.
CrossRef | CAS |

Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5, 325–331.
CrossRef | CAS |

Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99, 473–483.
CrossRef | CAS |

Liu R, Lu B, Wang X, Zhang C, Zhang S, Qian J, Chen L, Shi H, Dong H (2010) Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. Journal of Biosciences 35, 435–450.
CrossRef | CAS |

Liu R, Chen L, Jia Z, Lu B, Shi H, Shao W, Dong H (2011) Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Molecular Plant-Microbe Interactions 24, 377–389.
CrossRef | CAS |

Lü BB, Sun WW, Zhang SP, Zhang CL, Qian J, Wang XM, Gao R, Dong HS (2011) HrpNEa-induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. Journal of Biosciences 36, 123–137.
CrossRef |

Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends in Genetics 13, 67–73.
CrossRef | CAS |

Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. The Plant Cell 15, 2551–2565.
CrossRef | CAS |

Métraux JP (2002) Recent breakthroughs in the study of salicylic acid biosynthesis. Trends in Plant Science 7, 332–334.
CrossRef |

Onkokesung N, Baldwin IT, Galis I (2010) The role of jasmonic acid and ethylene crosstalk in direct defense of Nicotiana attenuata plants against chewing herbivores. Plant Signaling & Behavior 5, 1305–1307.
CrossRef | CAS |

Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiology 150, 1648–1655.
CrossRef | CAS |

Pitzschke A, Djamei A, Teige M, Hirt H (2009) VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proceedings of the National Academy of Sciences of the United States of America 106, 18414–18419.
CrossRef | CAS |

Pre M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology 147, 1347–1357.
CrossRef | CAS |

Prithiviraj B, Perry LG, Badri DV, Vivanco JM (2007) Chemical facilitation and induced pathogen resistance mediated by a root-secreted phytotoxin. New Phytologist 173, 852–860.
CrossRef | CAS |

Ramirez V, Agorio A, Coego A, Garcia-Andrade J, Hernandez MJ, Balaguer B, Ouwerkerk PB, Zarra I, Vera P (2011a) MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. Plant Physiology 155, 1920–1935.
CrossRef | CAS |

Ramírez V, García-Andrade J, Vera P (2011b) Enhanced disease resistance to Botrytis cinerea in myb46 Arabidopsis plants is associated to an early down-regulation of CesA genes. Plant Signaling & Behavior 6, 911–913.
CrossRef |

Remans R, Spaepen S, Vanderleyden J (2006) Auxin signaling in plant defense. Science 313, 171
CrossRef |

Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annual Review of Phytopathology 49, 317–343.
CrossRef | CAS |

Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology 1, 311–315.
CrossRef | CAS |

Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. The Plant Cell 8, 1809–1819.

Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytologist 186, 471–483.
CrossRef | CAS |

Spoel SH, Dong XN (2012) How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews. Immunology 12, 89–100.
CrossRef | CAS |

Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4, 447–456.
CrossRef | CAS |

Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiology 135, 530–538.
CrossRef | CAS |

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200.
CrossRef | CAS |

Vaahtera L, Brosche M (2011) More than the sum of its parts – how to achieve a specific transcriptional response to abiotic stress. Plant Science 180, 421–430.
CrossRef | CAS |

van Wees SC, Glazebrook J (2003) Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. The Plant Journal 33, 733–742.
CrossRef | CAS |

Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C, Roby D (2002) A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proceedings of the National Academy of Sciences of the United States of America 99, 10179–10184.
CrossRef | CAS |

Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47, 177–206.
CrossRef | CAS |

Wang Y, Liu R, Chen L, Liang Y, Wu X, Li B, Wu J, Wang X, Zhang C, Wang Q, Hong X, Dong H (2009) Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes. Journal of Cell Science 122, 2673–2685.
CrossRef | CAS |

Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257, 85–88.
CrossRef | CAS |

Xu XP, Chen CH, Fan BF, Chen ZX (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. The Plant Cell 18, 1310–1326.
CrossRef | CAS |

Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology 60, 107–124.
CrossRef |

Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014