CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 40(12)

Plant–aphid interactions with a focus on legumes

Lars G. Kamphuis A B , Katherine Zulak A , Ling-Ling Gao A , Jonathan Anderson A B and Karam B. Singh A B C

A CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia.
B The UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia.
C Corresponding author. Email: karam.singh@csiro.au
This paper originates from a presentation at the ‘VI International Conference on Legume Genetics and Genomics (ICLGG)’ Hyderabad, India, 2–7 October 2012.

Functional Plant Biology 40(12) 1271-1284 http://dx.doi.org/10.1071/FP13090
Submitted: 10 April 2013  Accepted: 29 May 2013   Published: 25 July 2013


 
PDF (365 KB) $25
 Export Citation
 Print
  
Abstract

Sap-sucking insects such as aphids cause substantial yield losses in agriculture by draining plant nutrients as well as vectoring viruses. The main method of control in agriculture is through the application of insecticides. However, aphids rapidly evolve mechanisms to detoxify these, so there is a need to develop durable plant resistance to these damaging insect pests. The focus of this review is on aphid interactions with legumes, but work on aphid interactions with other plants, particularly Arabidopsis and tomato is also discussed. This review covers advances on the plant side of the interaction, including the identification of major resistance genes and quantitative trait loci conferring aphid resistance in legumes, basal and resistance gene mediated defence signalling following aphid infestation and the role of specialised metabolites. On the aphid side of the interaction, this review covers what is known about aphid effector proteins and aphid detoxification enzymes. Recent advances in these areas have provided insight into mechanisms underlying resistance to aphids and the strategies used by aphids for successful infestations and have significant impacts for the delivery of durable resistance to aphids in legume crops.

Additional keywords: antibiosis, antixenosis, defence signaling, defense signalling, legume, sap-sucking insect.


References

Ade J, Deyoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences of the United States of America 104, 2531–2536.
CrossRef |

Adio AM, Casteel CL, De Vos M, Kim JH, Joshi V, Li B, Juéry C, Daron J, Kliebenstein DJ, Jander G (2011) Biosynthesis and defensive function of Nδ-acetylornithine, a jasmonate-induced Arabidopsis metabolite. The Plant Cell 23, 3303–3318.
CrossRef |

Annan IB, Tingey WM, Schaefers GA, Tjallingii WF, Backus EA, Saxena KN (2000) Stylet penetration activities by Aphis craccivora (Homoptera: Aphididae) on plants and excised plant parts of resistant and susceptible cultivars of cowpea (Leguminosae). Annals of the Entomological Society of America 93, 133–140.
CrossRef |

Atamian HS, Eulgem T, Kaloshian I (2012) SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235, 299–309.
CrossRef |

Atamian HS, Chaudhary R, Dal Cin V, Bao E, Girke T, Kaloshian I (2013) In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Molecular Plant-Microbe Interactions 26, 67–74.
CrossRef |

Bata HD, Singh BB, Singh SR, Ladeinde Ta O (1987) Inheritance of resistance to aphid in cowpea. Crop Science 27, 892–894.
CrossRef |

Bhattarai KK, Li Q, Liu Y, Dinesh-Kumar SP, Kaloshian I (2007a) The Mi-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiology 144, 312–323.
CrossRef |

Bhattarai KK, Xie QG, Pourshalimi D, Younglove T, Kaloshian I (2007b) Coi1-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance. Molecular Plant-Microbe Interactions 20, 276–282.
CrossRef |

Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T (2010) WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. The Plant Journal 63, 229–240.
CrossRef |

Blackman RL, Eastop VF (1984) ‘Aphids on the world’s crops; an identification and information guide.’ (John Wiley & Sons: Chichester, UK)

Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9, 2457–2467.
CrossRef |

Casteel CL, Walling LL, Paine TD (2006) Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomologia Experimentalis et Applicata 121, 67–72.
CrossRef |

Cevik V, King GJ (2002a) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theoretical and Applied Genetics 105, 346–354.
CrossRef |

Cevik V, King GJ (2002b) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45, 939–945.
CrossRef |

Chen M-S, Zhao H-X, Zhu YC, Scheffler B, Liu X, Liu X, Hulbert S, Stuart JJ (2008) Analysis of transcripts and proteins expressed in the salivary glands of Hessian fly (Mayetiola destructor) larvae. Journal of Insect Physiology 54, 1–16.
CrossRef |

Chiozza MV, O’Neal ME, Macintosh GC (2010) Consitutive and induced differential accumulation of amino acid in leaves of susceptible and resistant soybean plants in response to the soybean aphid (Hemiptera: Aphididae). Environmental Entomology 39, 856–864.
CrossRef |

Cooper WC, Jia L, Goggin FL (2004) Acquired and R-gene-mediated resistance against the potato aphid in tomato. Journal of Chemical Ecology 30, 2527–2542.
CrossRef |

Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biology 8, 9
CrossRef |

De Geyter E, Smagghe G, Rhabe Y, Geelen R (2012) Triterpene saponins of Quillaja saponaria show strong aphicidal and deterrent activity against the pea aphid Acyrthosiphon pisum. Pest Management Science 68, 164–169.
CrossRef |

de Ilarduya OM, Xie QG, Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Molecular Plant-Microbe Interactions 16, 699–708.
CrossRef |

De La Fuente Van Bentem S, Vossen JH, De Vries KL, van Wees S, Tameling WIL, Dekker HL, de Koster CG, Haring MA, Takken FLW, Cornelissen BJC (2005) Heat shock protein 90 and its co-chaperone protein phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance protein. The Plant Journal 43, 284–298.
CrossRef |

De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell & Environment 32, 1548–1560.
CrossRef |

De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions 18, 923–937.
CrossRef |

de Vos M, Cheng WY, Summers HE, Raguso RA, Jander G (2010) Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes. Proceedings of the National Academy of Sciences of the United States of America 107, 14 673–14 678.
CrossRef |

Diaz-Montano J, Reese JC, Louis J, Campbell LR, Schapaugh WT (2007) Feeding behavior by the soybean aphid (Hemiptera: Aphididae) on resistant and susceptible soybean genotypes. Journal of Economic Entomology 100, 984–989.
CrossRef |

Digilio MC, Corrado G, Sasso R, Coppola V, Iodice L, Pasquariello M, Bossi S, Maffei ME, Coppola M, Pennacchio F, Rao R, Guerrieri E (2010) Molecular and chemical mechanisms involved in aphid resistance in cultivated tomato. New Phytologist 187, 1089–1101.
CrossRef |

Dogimont C, Bendahmane A, Pitrat M, Burget-Bigeard E, Hagen L (2007) Gene resistant to Aphis gossypii. United States of America Patent no. 0070016977.

Du Y, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract the parasitoid Aphidius ervi. Journal of Chemical Ecology 24, 1355–1368.
CrossRef |

Edwards OR, Singh KB (2006) Resistance to insect pests: what do legumes have to offer? Euphytica 147, 273–285.
CrossRef |

Ellis C, Karafyllidis I, Turner JG (2002) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Molecular Plant-Microbe Interactions 15, 1025–1030.
CrossRef |

Ellwood SR, D’ Souza NK, Kamphuis LG, Burgess TI, Nair RM, Oliver RP (2006) SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theoretical and Applied Genetics 112, 977–983.
CrossRef |

Figueroa CC, Prunier-Leterme N, Rispe C, Sepúlveda F, Fuentes-Contreras E, Sabater-Muñoz B, Simon J-C, Tagu D (2007) Annotated expressed sequence tags and xenobiotic detoxification in the aphid Myzus persicae (Sulzer). Insect Science 14, 29–45.
CrossRef |

Golawska S (2007) Deterrence and toxicity of plant saponins for the pea aphid Acyrthosiphon pisum Harris. Journal of Chemical Ecology 33, 1598–1606.
CrossRef |

Gao L, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB (2007a) Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Molecular Plant-Microbe Interactions 20, 82–93.
CrossRef |

Gao LL, Horbury R, Nair RM, Edwards OR, Singh KB (2007b) Characterization of resistance to multiple aphid species (Hemiptera: Aphididae) in Medicago truncatula. Bulletin of Entomological Research 97, 41–48.
CrossRef |

Gao LL, Klingler JP, Anderson JP, Edwards OR, Singh KB (2008) Characterization of pea aphid resistance in Medicago truncatula. Plant Physiology 146, 996–1009.
CrossRef |

Gao LL, Kamphuis LG, Kakar K, Edwards OR, Udvardi MK, Singh KB (2010) Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling. New Phytologist 186, 980–994.
CrossRef |

Goławska S, Lukasik I (2009) Acceptance of low-saponin lines of alfalfa with varied phenolic concentrations by pea aphid (Homoptera: Aphididae). Biologia 64, 377–382.
CrossRef |

Guo S, Kamphuis LG, Gao L-L, Edwards OR, Singh KB (2009) Two independent resistance genes in the Medicago truncatula cultivar Jester confer resistance to two different aphid species of the genus Acyrthosiphon. Plant Signaling & Behavior 4, 328–331.
CrossRef |

Guo S, Kamphuis LG, Gao L-L, Klingler JP, Lichtenzveig J, Edwards O, Singh KB (2012) Identification of distinct quantitative trait loci associated with defense against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. Journal of Experimental Botany 63, 3913–3922.
CrossRef |

Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology 14, 177–193.
CrossRef |

Harmel N, Letocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Molecular Biology 17, 165–174.
CrossRef |

Heyns I, Groenewald E, Marais F, Du Toit F, Tolmay V (2006) Chromosomal location of the Russian wheat aphid resistance gene, Dn5. Crop Science 46, 630–636.
CrossRef |

Hill CB, Li Y, Hartman GL (2004) Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae). Journal of Economic Entomology 97, 1071–1077.
CrossRef |

Hill CB, Li Y, Hartman GL (2006) A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Science 46, 1601–1605.
CrossRef |

Hill CB, Kim K-S, Crull L, Diers BW, Hartman GL (2009) Inheritance of resistance to the soybean aphid in soybean PI 200538. Crop Science 49, 1193–1200.
CrossRef |

Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interactions. Current Opinion in Plant Biology 14, 422–428.
CrossRef |

Hunter WB, Dang PM, Bausher MG, Chaparro JX, McKendree W, Shatters Jr, RG, Hunter WB, Dang PM, Bausher MG, Chaparro JX, McKendree W, Shatters Jr, RG, (2003) Aphid biology: expressed genes from alate Toxoptera citricida, the brown citrus aphid. Journal of Insect Science 3, 23

Hwang C-F, Williamson VM (2003) Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. The Plant Journal 34, 585–593.
CrossRef |

Hwang C-F, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM (2000) Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. The Plant Cell 12, 1319–1329.

International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLOS Biology 8, e1000313
CrossRef |

Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, Rispe C, Tagu D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnology 7, 63
CrossRef |

Jones JDG, Dangl JL (2006) The plant immune system. Nature 444, 323–329.
CrossRef |

Joseph S, Peter KV (2003) Inheritance of aphid resistance in cowpea. Legume Research 26, 57–59.

Jun T-H, Rouf Mian MA, Michel AP (2012) Genetic mapping revealed two loci for soybean aphid resistance in PI 567301B. Theoretical and Applied Genetics 124, 13–22.
CrossRef |

Kamphuis LG, Gao L-L, Singh KB (2012) Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch.) in Medicago truncatula. BMC Plant Biology 12, 101
CrossRef |

Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology 143, 849–865.
CrossRef |

Klingler J, Creasy R, Gao L, Nair RM, Calix AS, Jacob HS, Edwards OR, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiology 137, 1445–1455.
CrossRef |

Klingler JP, Edwards OR, Singh KB (2007) Independent action and contrasting phenotypes of resistance genes against spotted alfalfa aphid and bluegreen aphid in Medicago truncatula. New Phytologist 173, 630–640.
CrossRef |

Klingler JP, Nair RM, Edwards OR, Singh KB (2009) A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. Journal of Experimental Botany 60, 4115–4127.
CrossRef |

Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions 20, 120–128.
CrossRef |

Kos M, Houshyani B, Overeem A-J, Bouwmeester HJ, Weldegergis BT, van Loon JJA, Dicke M, Vet LEM (2013) Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. Pest Management Science 69, 302–311.
CrossRef |

Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G, Moussy F, Sanchez M, Baker D, Clarke J, Thompson R (2009) Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnology Journal 7, 430–441.
CrossRef |

Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell 16, 319–331.
CrossRef |

Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal 46, 477–491.
CrossRef |

Li Y, Hill CB, Carlson SR, Diers BW, Hartman GL (2007) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Molecular Breeding 19, 25–34.
CrossRef |

Li Y, Zou J, Li M, Bilgin DD, Vodkin LO, Hartman GL, Clough SJ (2008) Soybean defence responses to the soybean aphid. New Phytologist 179, 185–195.
CrossRef |

Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G (2009) RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biology 7, e1000139
CrossRef |

Liu S, Chougule NP, Vijayendran D, Bonning BC (2012) Deep sequencing of the transcriptomes of soybean aphid and associated endosymbionts. PLoS ONE 7, e45161
CrossRef |

Louis J, Lorenc-Kukula K, Singh V, Reese J, Jander G, Shah J (2010) Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene. The Plant Journal 64, 800–811.
CrossRef |

Louis J, Gobbato E, Mondal HA, Feys BJ, Parker JE, Shah J (2012) Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens. Plant Physiology 158, 1860–1872.
CrossRef |

Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754.
CrossRef |

Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology 54, 23–61.
CrossRef |

Martinez De Ilarduya O, Moore AE, Kaloshian I (2001) The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. The Plant Journal 27, 417–425.
CrossRef |

Martinez De Ilarduya O, Nombela G, Hwang C-F, Williamson VM, Muñiz M, Kaloshian I (2004) Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway. Molecular Plant-Microbe Interactions 17, 55–61.
CrossRef |

Mensah CC, Difonzo C, Nelson RL, Wang D (2005) Resistance to soybean aphid in early maturing soybean germplasm. Crop Science 45, 2228–2233.
CrossRef |

Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology 138, 1149–1162.
CrossRef |

Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67, 2450–2462.
CrossRef |

Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology 125, 1074–1085.
CrossRef |

Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid Interactions. Archives of Insect Biochemistry and Physiology 51, 182–203.
CrossRef |

Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science 6, 1–7.
CrossRef |

Mutti NS, Louis J, Pappan LK, Begum K, Chen M-S, Park Y, Dittmer N, Marshall J, Reese JC, Reeck GR (2008) A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proceedings of the National Academy of Sciences of the United States of America 105, 9965–9969.
CrossRef |

Myers GO, Fatolun CA, Young ND (1996) RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata L. Walp). Euphytica 91, 181–187.

Nombela G, Williamson VM, Muñiz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions 16, 645–649.
CrossRef |

Ohnishi S, Miyake N, Takeuchi T, Kousaka F, Hiura S, Kanehira O, Saito M, Sayama T, Higashi A, Ishimoto M, Tanaka Y, Fujita S (2012) Fine mapping of foxglove aphid (Aulacorthum solani) resistance gene Raso1 in soybean and its effect on tolerance to Soybean dwarf virus transmitted by foxglove aphid. Breeding Science 61, 618–624.
CrossRef |

Ohta N, Mori N, Kuwahra Y, Nishida R (2006) A hemiterpene glucoside as a probing deterrent of the bean aphid, Megoura crassicauda, from a non-host vetch, Vicia hirsuta. Phytochemistry 67, 584–588.
CrossRef |

Pascal T, Pfeiffer F, Kervella J, Lacroze JP, Sauge MH (2002) Inheritance of green peach aphid resistance in the peach cultivar ‘Rubira’. Plant Breeding 121, 459–461.

Pathak RS (1988) Genetics of resistance to aphids in cowpea. Crop Science 28, 474–476.
CrossRef |

Pegadaraju V, Knepper C, Reese J, Shah J (2005) Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiology 139, 1927–1934.
CrossRef |

Pegadaraju V, Louis J, Singh V, Reese JC, Bautor J, Feys BJ, Cook G, Parker JE, Shah J (2007) Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. The Plant Journal 52, 332–341.
CrossRef |

Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annual Review of Plant Biology 62, 549–566.
CrossRef |

Pitino M, Hogenhout SA (2013) Aphid protein effectors promote aphid colonization in a plant species-specific manner. Molecular Plant-Microbe Interactions 26, 130–139.
CrossRef |

Ramsey JS, Wilson ACC, De Vos M, Sun Q, Tamborindeguy C, Winfield A, Malloch G, Smith DM, Fenton B, Gray SM, Jander G (2007) Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics 8, 423
CrossRef |

Ramsey JS, Rider DS, Walsh TK, De Vos M, Gordon KHJ, Ponnala L, Macmil SL, Roe BA, Jander G (2010) Comparative analysis of detoxification enzymes in Acrythosiphon pisum and Myzus persicae. Insect Molecular Biology 19, 155–164.
CrossRef |

Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE (2011) Different roles of enhanced disease susceptibility1 (EDS1) bound to and dissociated from phytoalexin deficient4 (PAD4) in Arabidopsis immunity. New Phytologist 191, 107–119.
CrossRef |

Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theoretical and Applied Genetics 94, 528–533.
CrossRef |

Rossi M, Goggin F, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences of the United States of America 95, 9750–9754.
CrossRef |

Rouf Mian MA, Kang S-T, Beil SE, Hammond RB (2008) Genetic linkage mapping of the soybean aphid resistance gene in PI 243540. Theoretical and Applied Genetics 117, 955–962.
CrossRef |

Sargent DJ, Fernández-Fernández F, Rys A, Knight VH, Simpson DW, Tobutt KR (2007) Mapping of A1 conferring resistance to the aphid Amphorophora idaei and dw (dwarfing habit) in red raspberry (Rubus idaeus L.) using AFLP and microsatellite markers. BMC Plant Biology 7, 15
CrossRef |

Sattar S, Addo-Quaye C, Song Y, Anstead JA, Sunkar R, Thompson GA (2012a) Expression of small RNA in Aphis gossypii and its potential role in the resistance interaction with melon. PLoS ONE 7, e48579

Sattar S, Song Y, Anstead JA, Sunkar R, Thompson GA (2012b) Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction. Molecular Plant-Microbe Interactions 25, 839–848.
CrossRef |

Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochemistry and Molecular Biology 39, 1–10.
CrossRef |

Shirasu K (2009) The HSP90–SGT1 chaperone complex for NLR immune sensors. Annual Review of Plant Biology 60, 139–164.
CrossRef |

Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. The Plant Cell 20, 1984–2000.
CrossRef |

Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomologia Experimentalis et Applicata 122, 1–16.
CrossRef |

Staudt M, Jackson B, El-Aouni H, Buatois B, Lacroze J-P, Poëssel J-L, Sauge M-H, Niinemets Ü (2010) Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiology 30, 1320–1334.
CrossRef |

Stewart SA, Hodge S, Ismail N, Mansfield JW, Feys BJ, Prospéri J-M, Huguet T, Ben C, Gentzbittel L, Powell G (2009) The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Molecular Plant-Microbe Interactions 22, 1645–1655.
CrossRef |

Studham ME, Macintosh GC (2013) Multiple phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. Molecular Plant-Microbe Interactions 26, 116–129.
CrossRef |

Tadege M, Ratet P, Mysore KS (2005) Insertional mutagenesis: a Swiss army knife for functional genomics of Medicago truncatula. Trends in Plant Science 10, 229–235.
CrossRef |

Tagu D, Prunier-Leterme N, Legeai F, Gauthier J-P, Duclert A, Sabater-Muñoz B, Bonhomme J, Simon JC (2004) Annotated expressed sequence tags for studies of the regulation of reproductive modes in aphids. Insect Biochemistry and Molecular Biology 34, 809–822.
CrossRef |

Takemura M, Nishida R, Mori N, Kuwahara Y (2002) Acylated flavonol glycosides as probing stimulants of a bean aphid, Megoura crassicauda, from Vicia angustifolia. Phytochemistry 61, 135–140.
CrossRef |

Takken FLW, Albrecht M, Tameling WIL (2006) Resistance proteins: molecular switched of plant defence. Current Opinion in Plant Biology 9, 383–390.
CrossRef |

Tameling WIL, Baulcombe DC (2007) Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to potato virus X. The Plant Cell 19, 1682–1694.
CrossRef |

Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experimental Botany 57, 739–745.
CrossRef |

Van Eck L, Schultz T, Leach JE, Scofield SR, Peairs FP, Botha A-M, Lapitan NLV (2010) Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnology Journal 8, 1023–1032.
CrossRef |

van’t Slot KAE, Knogge W (2002) A dual role for microbial pathogen-derived effector proteins in plant disease and resistance. Critical Reviews in Plant Sciences 21, 229–271.
CrossRef |

Verheggen FJ, Arnaud L, Bartram S, Gohy M, Haubruge E (2008) Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. Journal of Chemical Ecology 34, 301–307.
CrossRef |

Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnology 16, 1365–1369.
CrossRef |

Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiology 146, 859–866.
CrossRef |

Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology 65, 799–815.
CrossRef |

Will T, Tjallingii WF, Thonnessen A, Van Bel AJE (2007) Molecular sabotage of plant defense by aphid saliva. Proceedings of the National Academy of Sciences of the United States of America 104, 10 536–10 541.
CrossRef |

Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW (2007) Silencing of the major family of NBS-LRR encoding genes in lettuce results in the loss of multiple resistance specificities. The Plant Journal 51, 803–818.
CrossRef |

Zhang G, Gu C, Wang D (2009) Molecular mapping of soybean aphid resistance genes in PI 567541B. Theoretical and Applied Genetics 118, 473–482.
CrossRef |

Zhang G, Gu C, Wang D (2010) A novel locus for soybean aphid resistance. Theoretical and Applied Genetics 120, 1183–1191.
CrossRef |

Zhu J, Park K-C (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. Journal of Chemical Ecology 31, 1733–1746.
CrossRef |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014