CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>        Online Early    

Increasing nitrogen supply stimulates phosphorus acquisition mechanisms in the fynbos species Aspalathus linearis

Pravin M. Maistry A , A. Muthama Muasya A , Alex J. Valentine B and Samson B. M. Chimphango A C

A Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
B Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
C Corresponding author. Email: samson.chimphango@uct.ac.za

Functional Plant Biology - http://dx.doi.org/10.1071/FP14100
Submitted: 31 March 2014  Accepted: 2 July 2014   Published online: 20 August 2014


 
PDF (652 KB) $25
 Export Citation
 Print
  
Abstract

We investigated the physiological basis for tolerance of limiting P supply and for enhanced growth with simultaneous addition of N and P in Aspalathus linearis (Burm. f.) R. Dahlgren. It was hypothesised that increasing N supply would stimulate P acquisition mechanisms and enhance plant growth with high P supply. In sand, plants received 100 μM, 300 μM, 500 μM and 700 µM N at a low P level of 10 µM and a high P level of 100 µM. In solution, plants received 200 μM and 500 µM N at a low P level of 5 µM and a high P level of 15 µM. Cluster roots formed only in plants with low P supply. Roots showed greater citrate and malate production and phosphatase activity at 5 µM P than at 15 µM P. At 10 µM P, greater N supply enhanced cluster root formation to 60% of root biomass, and increased the phosphatase activity of noncluster roots and succinate release by both root types. At a high P supply of 15 µM, greater N supply stimulated phosphatase activity of roots by 50%, increasing P uptake and plant growth. With increased resource partitioning towards P acquisition due to greater P demand, A. linearis is tolerant of low P supply and highly responsive to combined addition of N and P.

Additional keywords: cluster roots, colimitation, organic acids, phosphatase.


References

Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants – an economic analogy. Annual Review of Ecology and Systematics 16, 363–392.

Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytologist 163, 177–185.
CrossRef |

Craine JM, Jackson RD (2010) Plant nitrogen and phosphorus limitation in 98 North American soils. Plant and Soil 334, 73–84.
CrossRef | CAS |

Davidson EA, Howarth RW (2007) Nutrients in synergy. Nature 449, 1000–1001.
CrossRef | CAS | PubMed |

Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant, Cell & Environment 12, 285–292.
CrossRef | CAS |

Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Botanica Acta 108, 183–200.
CrossRef |

Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10, 1135–1142.
CrossRef | PubMed |

Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist 186, 593–608.
CrossRef | CAS | PubMed |

Fageria VD (2001) Nutrient interactions in crop plants. Journal of Plant Nutrition 24, 1269–1290.
CrossRef | CAS |

Fujita Y, de Ruiter PC, Wassen MJ, Heil GW (2010) Time dependent, species-specific effects of N?:?P stoichiometry on grassland plant growth. Plant and Soil 334, 99–112.
CrossRef | CAS |

Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology 41, 47–92.
CrossRef | CAS | PubMed |

Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant, Cell & Environment 22, 801–810.
CrossRef | CAS |

Güsewell S (2004) N?:?P ratios in terrestrial plants: variation and functional significance. New Phytologist 164, 243–266.
CrossRef |

Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecology Letters 14, 852–862.
CrossRef | PubMed |

Hawkins H-J, Wolf G, Stock WD (2005) Cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) take up glycine intact: an adaptive strategy to low mineral N in soils? Annals of Botany 96, 1275–1282.
CrossRef | CAS | PubMed |

Hawkins H-J, Hettasch H, Cramer MD (2007) Putting back what we take out, but by how much? Phosphorus and nitrogen additions to farmed Leucodendron ‘Safari Sunset’ and Leucospermum ‘Succession’ (Proteaceae). Scientia Horticulturae 111, 378–388.
CrossRef |

Hawkins H-J, Malgas R, Bienabe E (2011) Ecotypes of wild rooibos (Aspalathus linearis (Burm. F) Dahlg., Fabaceae) are ecologically distinct. South African Journal of Botany 77, 360–370.
CrossRef |

Hills EJ, Sailsberry RL, Ulrich A, Sipitanos KM (1970) Effect of phosphorus on nitrate in sugar beet (Beta vulgaris L.). Agronomy Journal 62, 91–92.
CrossRef | CAS |

Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237, 173–195.
CrossRef | CAS |

Houlton BZ, Wang Y-P, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330.
CrossRef | CAS | PubMed |

Kalra YP (1998) ‘Handbook of standard methods of plant analysis.’ (CRC Press: Boca Raton)

Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus). Plant, Cell & Environment 21, 467–478.
CrossRef | CAS |

Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany 98, 693–713.
CrossRef | PubMed |

Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high species diversity on fertile soils is linked to functional diversity for nutritional strategies. Plant and Soil 334, 11–31.
CrossRef | CAS |

Lambers H, Finnegan PM, Laliberte E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ (2011) Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiology 156, 1058–1066.
CrossRef | CAS | PubMed |

Lamont B (1972) The effect of soil nutrients on the production of proteoid roots by Hakea species. Australian Journal of Botany 20, 27–40.
CrossRef | CAS |

Li H, Shen J, Zhang F, Tang C, Lambers H (2008) Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus? Functional Plant Biology 35, 328–336.
CrossRef | CAS |

Maistry PM, Cramer MD, Chimphango SBM (2013) N and P colimitation of N2-fixing and N-supplied fynbos legumes from the Cape Floristic Region. Plant and Soil 373, 217–228.
CrossRef | CAS |

Manning J, Goldblatt P (2012) ‘Plants of the Greater Cape Floristic Region 1: the Core Cape Flora, Strelitzia 29.’ (South African National Biodiversity Institute: Pretoria)

Matzek V, Vitousek PM (2009) N?:?P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth rate hypothesis. Ecology Letters 12, 765–771.
CrossRef | PubMed |

Mitchell DT, Brown G, Jongens-Roberts SM (1984) Variations of forms of phosphorus in the sandy soils of coastal fynbos, south-western Cape. Journal of Ecology 72, 575–584.
CrossRef | CAS |

Morton JF (1983) Rooibos tea, Aspalathus linearis, a caffeineless, low-tannin beverage. Economic Botany 37, 164–173.
CrossRef |

Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208, 373–382.
CrossRef | CAS |

Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. Journal of Experimental Botany 52, 329–339.
CrossRef | CAS | PubMed |

Olander LP, Vitousek PM (2000) Regulation of soil phosphate and chitinase activity by soil N and P availability. Biogeochemistry 49, 175–191.
CrossRef | CAS |

Ostertag R (2010) Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant and Soil 334, 85–98.
CrossRef | CAS |

Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KHM, Bolland MDA, Denton MD, Lambers H (2010) Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil 331, 241–255.
CrossRef | CAS |

Paungfoo-Lonhienne C, Schenk PM, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. Journal of Experimental Botany 60, 2665–2676.
CrossRef | CAS | PubMed |

Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant and Soil 288, 127–139.
CrossRef | CAS |

Phoenix GK, Booth RE, Leake JR, Read DJ, Grime JP, Lee JA (2004) Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytologist 161, 279–290.
CrossRef | CAS |

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193, 30–50.
CrossRef | CAS | PubMed |

Power SC, Cramer MD, Verboom GA, Chimphango SBM (2010) Does phosphate acquisition constrain legume persistence in fynbos of the Cape Floristic Region? Plant and Soil 334, 33–46.
CrossRef | CAS |

Power SC, Cramer MD, Verboom GA, Chimphango SBM (2011) Legume seeders of the Cape Floristic Region inhabit more fertile soils than congeneric resprouters – sometimes. Plant Ecology 212, 1979–1989.
CrossRef |

Reddell P, Yun Y, Shipton WA (1997) Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Australian Journal of Botany 45, 41–51.
CrossRef |

Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant, Cell & Environment 24, 891–904.
CrossRef | CAS |

Rufty TW, MacKown CT, Israel DW (1990) Phosphorus effects on assimilation of nitrate. Plant Physiology 94, 328–333.
CrossRef | CAS | PubMed |

Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology 52, 527–560.
CrossRef | CAS | PubMed |

Ryan MH, Ehrenberg S, Bennett RG, Tibbett M (2009) Putting the P in Ptilotus: a phosphorus accumulating herb native to Australia. Annals of Botany 103, 901–911.
CrossRef | CAS | PubMed |

Sas L, Rengel Z, Tang C (2002) The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus. Annals of Botany 89, 435–442.
CrossRef | CAS | PubMed |

Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant and Soil 274, 101–125.
CrossRef | CAS |

Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray G, Millar HA, Day DA, Lambers H (2004) Developmental physiology of cluster root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiology 135, 549–560.
CrossRef | CAS | PubMed |

Shane MW, Cramer MD, Lambers H (2008) Root of edaphically controlled Proteaceae turnover on the Agulhas Plain, South Africa: phosphate uptake regulation and growth. Plant, Cell & Environment 31, 1825–1833.
CrossRef | CAS |

Shaver GR, Melillo JM (1984) Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65, 1491–1510.
CrossRef |

Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW (1990) Studies on the uptake of nitrate in barley. 1. Kinetics and 13NO3 ¯ influx. Plant Physiology 93, 1426–1432.
CrossRef | CAS | PubMed |

Smith WH (1976) Character and significance of forest tree exudates. Ecology 57, 324–331.
CrossRef | CAS |

Smith FW, Jackson WA (1987) Nitrogen enhancement of phosphate transport in roots of Zea mays L. 1. Effects of ammonium and nitrate pretreatment. Plant Physiology 84, 1314–1318.
CrossRef | CAS | PubMed |

Stock WD, Lewis OAM (1986) Soil nitrogen and the role of fire as a mineralizing agent in a South African coastal fynbos ecosystem. Journal of Ecology 74, 317–328.
CrossRef |

Stock WD, Verboom GA (2012) Phylogenetic ecology of foliar N and P concentrations and N?:?P ratios across Mediterranean-type ecosystems. Global Ecology and Biogeography 21, 1147–1156.
CrossRef |

Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry 1, 301–307.
CrossRef | CAS |

Tadano T, Sakai H (1991) Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Science and Plant Nutrition 37, 129–140.
CrossRef | CAS |

Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biology and Fertility of Soils 5, 308–312.
CrossRef | CAS |

Thien SJ, McFee WW (1972) Effect of nitrogen on phosphorus transport systems in Zea mays L. Soil Science Society of America Journal 36, 617–620.
CrossRef | CAS |

Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82, 946–954.
CrossRef |

Vitousek PM, Porder S, Houlton BZ, Chadwick A (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications 20, 5–15.
CrossRef | PubMed |

Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology 127, 345–359.
CrossRef | CAS | PubMed |

Witkowski ETF, Mitchell DT (1987) Variations in soil phosphorus in the fynbos biome, South Africa. Journal of Ecology 75, 1159–1171.
CrossRef |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014