Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Heterotrimeric G-proteins involved in the MeJA regulated ion flux and stomatal closure in Arabidopsis thaliana

Suli Yan A B , Shuitian Luo A B , Shanshan Dong A B , Ting Zhang A B , Jingru Sun A B , Ningning Wang A B , Hongjun Yao A and Yingbai Shen A B C
+ Author Affiliations
- Author Affiliations

A College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100 083, China.

B National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100 083, China.

C Corresponding author. Email: ybshen@bjfu.edu.cn

Functional Plant Biology 42(2) 126-135 https://doi.org/10.1071/FP14162
Submitted: 14 June 2014  Accepted: 15 September 2014   Published: 15 October 2014

Abstract

Heterotrimeric G-proteins play an important role in plant signalling pathways. The plant hormone methyl jasmonate (MeJA) can induce stomatal closure in many plant species. The signal cascade in MeJA-induced stomatal closure has been studied previously. However, the function of G proteins in this process has not yet been evaluated. In this study, the stomatal movement induced by MeJA in the wild-type Arabidopsis thaliana (L. Heynh.) (WS), Gα subunit loss-of-function mutant gpa11 and gpa12 guard cells were measured. Further, the transmembrane ion flux (H+, Ca2+ and K+) and reactive oxygen species (ROS) experiments were performed in guard cells from WS, GDP-β-S pre-treated WS, gpa11 and gpa12 using non-invasive micro-test technique (NMT) and confocal technique. It was observed that the MeJA-induced stomatal closure was abolished in guard cells of gpa1 mutants. GDP-β-S pre-treatment and gpa1 mutants impaired the MeJA-activated H+ efflux, Ca2+ influx and K+ efflux. The accumulation of ROS in gpa11 and gpa12 guard cells was also lower than that in WS guard cells under MeJA treatment. These results suggested that Gα subunits are involved in regulating the signal events in JA signal pathway and stomatal closure.

Additional keywords: guard cell, heterotrimeric G-proteins, ion flux, MeJA.


References

Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1–1 and abi2–1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. The Plant Cell 11, 1785–1798.

Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alternation of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289, 2338–2342.
Alternation of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvF2ru7o%3D&md5=dc20ad1e0132d5abe1b5de0ab9a4b3c4CAS | 11009417PubMed |

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373–399.
Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisL0%3D&md5=93258699575f7ce4118d26409691a157CAS | 15377225PubMed |

Blatt MR (1990) Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid. Planta 180, 445–455.
Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtlKitbY%3D&md5=cd6138ffa605502e573999b909824508CAS | 24202027PubMed |

Brown AM, Birnbaumer L (1990) Ionic channels and their regulation by G protein subunits. Annual Review of Physiology 52, 197–213.
Ionic channels and their regulation by G protein subunits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVymtrs%3D&md5=ded702105730270a783b22da65be2c03CAS | 1691904PubMed |

Chen YL, Huang R, Xiao YM, Lü P, Chen J, Wang XC (2004) Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiology 136, 4096–4103.
Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVaksA%3D%3D&md5=1558320b1fd0e6fe7ad1af9952d51540CAS | 15557100PubMed |

Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Science in China. Series C, Life Sciences 49, 1–11.

Doerner P, Jørgensen JE, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380, 520–523.
Control of root growth and development by cyclin expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xit1Ols7g%3D&md5=1cfecdc90045522275998f5eb180438aCAS | 8606769PubMed |

Evans NH (2003) Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiology 131, 8–11.
Modulation of guard cell plasma membrane potassium currents by methyl jasmonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVGitA%3D%3D&md5=91401e7eabe766c54001188f62ec3f71CAS | 12529509PubMed |

Gehring CA, Irving HR, McConchie R, Parish RW (1997) Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. Annals of Botany 80, 485–489.
Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFGkt74%3D&md5=9b518362725caf87b2b416112d51719dCAS |

Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiology 113, 269–279.

He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M (2013) Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet β-induced stomatal closure in Arabidopsis leaves. Plant Physiology 161, 1570–1583.
Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet β-induced stomatal closure in Arabidopsis leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKru7c%3D&md5=7f586cd4734a854004e7dd17422df511CAS | 23341360PubMed |

Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO Journal 9, 3889–3892.

Hemerly AS, Ferreira P, de Almeida Engler J, Van Montagu M, Engler G, Inzé D (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. The Plant Cell 5, 1711–1723.
cdc2a expression in Arabidopsis is linked with competence for cell division.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVShsrg%3D&md5=77081b4570a0b9cb8127725104cd639eCAS | 8305869PubMed |

Hepler JR, Gilman AG (1992) G proteins. Trends in Biochemical Sciences 17, 383–387.
G proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsVOiu7g%3D&md5=2a0b17b920b28966d35197ed8d52e8c7CAS | 1455506PubMed |

Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424, 901–908.
The role of stomata in sensing and driving environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsV2isLw%3D&md5=db2ecea13be4fac2db20b31c84233c68CAS | 12931178PubMed |

Hochholdinger F, Park WJ, Feix GH (2001) Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize. Plant Physiology 125, 1529–1539.
Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFWrur0%3D&md5=8d7addd044f9a55c7d91708e82b33112CAS | 11244131PubMed |

Irving HR, Gehring CA, Parish RW (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America 89, 1790–1794.
Changes in cytosolic pH and calcium of guard cells precede stomatal movements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xitlaitb0%3D&md5=68922bd7947ea1848d1fef5e1e57b235CAS | 11607281PubMed |

Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y, Mori IC, Murata Y (2010) Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. Plant & Cell Physiology 51, 1721–1730.
Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsrnF&md5=3cc13977b4931fd1a9bea5d304a01136CAS |

Johnston CA, Siderovski DP (2007) Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Molecular Pharmacology 72, 219–230.
Receptor-mediated activation of heterotrimeric G-proteins: current structural insights.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVKrsLY%3D&md5=94311ebd245ee90de48c4fed9f3f4b85CAS | 17430994PubMed |

Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K (1999) The small GTP-binding protein Rac is a regulator of cell death in plants. Proceedings of the National Academy of Sciences of the United States of America 96, 10 922–10 926.
The small GTP-binding protein Rac is a regulator of cell death in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtFKjtr4%3D&md5=db4fdcf0d3d8985fa52d9d347033bbddCAS |

McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology 111, 1031–1042.

Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980.
Plant stomata function in innate immunity against bacterial invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVKiur0%3D&md5=e0df34c544e4fa8013293324171ffc04CAS | 16959575PubMed |

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.
Reactive oxygen gene network of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotF2msrg%3D&md5=3a969e0efcb33be6f335f5648a33b04bCAS | 15465684PubMed |

Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiology 143, 1398–1407.
The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyqtr4%3D&md5=43e143fbe107b2bbc9762cef00c55925CAS | 17220365PubMed |

Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD (P) H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1–1 and abi2–1 protein phosphatase 2C mutants. The Plant Cell 13, 2513–2523.

Okamoto H, Göbel C, Capper RG, Saunders N, Feussner I, Knight MR (2009) The alpha-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana. Journal of Experimental Botany 60, 1991–2003.
The alpha-subunit of the heterotrimeric G-protein affects jasmonate responses in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFSjtL8%3D&md5=59d725391d75683fad7b04b5d898e3dbCAS | 19342430PubMed |

Outlaw WH (1983) Current concepts on the role of potassium in stomatal movements. Physiologia Plantarum 59, 302–311.
Current concepts on the role of potassium in stomatal movements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFWls78%3D&md5=dfeb41faac0f8877b13df01a17027abeCAS |

Pandey S, Chen JG, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and post germination development. Plant Physiology 141, 243–256.
G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and post germination development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyqt7g%3D&md5=9720a86004e817dfd45ffc1fd117e4c2CAS | 16581874PubMed |

Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734.
Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1CgtLY%3D&md5=5a2d49a5bd2e14209e1e5d4a3e5795c4CAS | 10963598PubMed |

Porterfield DM, McLamore ES, Banks MK (2009) Microsensor technology for measuring H+ flux in buffered media. Sensors and Actuators. B, Chemical 136, 383–387.
Microsensor technology for measuring H+ flux in buffered media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvF2nt7s%3D&md5=a906dbe8e04c1b2e8af3abbeb88c4ceaCAS |

Punshon T, Hirschi K, Yang J, Lanzirotti A, Lai B, Guerinot ML (2012) The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiology 158, 352–362.
The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFSntrs%3D&md5=05f15e9868d0ac4219de0fb6f803cfb0CAS | 22086421PubMed |

Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002–1006.
Insect olfactory receptors are heteromeric ligand-gated ion channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVGrt70%3D&md5=6363dd988995b3d95598ca1491ab9c8cCAS | 18408712PubMed |

Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338, 427–430.
Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells.Crossref | GoogleScholarGoogle Scholar |

Schroeder JI, Raschke K, Neher E (1987) Voltage dependence of K channels in guard-cell protoplasts. Proceedings of the National Academy of Sciences of the United States of America 84, 4108–4112.
Voltage dependence of K channels in guard-cell protoplasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFKjsrs%3D&md5=62c8d152708137fc9e8263906449e49bCAS | 16593851PubMed |

Shabala S, Newman I, Whittington J, Juswono U (1998) Protoplast ion fluxes: their measurement and variation with time, position and osmoticum. Planta 204, 146–152.
Protoplast ion fluxes: their measurement and variation with time, position and osmoticum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotFCnuw%3D%3D&md5=4f359ada8dfdbd6201257234b34989a3CAS |

Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S (2006) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. Journal of Experimental Botany 57, 171–184.
Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCmsbvE&md5=c4550bdad037f56bb3b2f01bfaa509ddCAS | 16330526PubMed |

Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiology 134, 1536–1545.
Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKmsLw%3D&md5=23f8e697815fe023a78a456e47d5ec74CAS | 15064385PubMed |

Sun J, Chen SL, Dai SX, Wang RG, Li NY, Shen X, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology 149, 1141–1153.
NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1ajs7Y%3D&md5=3292a8a5ca4d274dbd6836e6f8f2ba5bCAS | 19028881PubMed |

Sun QP, Yu YK, Wan SX, Zhao FK, Hao YL (2010) Extracellular and intracellular calcium both involved in the jasmonic acid induced calcium mobilization in Arabidopsis thaliana. Scientia Agricultura Sinica 43, 942–949.

Vera-Estrella R, Higgins VJ, Blumwald E (1994) Plant defense response to fungal pathogens (II. G-protein-mediated changes in host plasma membrane redox reactions). Plant Physiology 106, 97–102.

White PJ (2000) Calcium channels in higher plants. Biochimica et Biophysica Acta 1465, 171–189.
Calcium channels in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Wgtrk%3D&md5=2a8887ce4bcce6a5e48d50eeaf72a599CAS | 10748253PubMed |

Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011.
Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVGrt7Y%3D&md5=369f8c16b21b4893539e6351c8e51a3dCAS | 18408711PubMed |

Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiological Reviews 75, 865–885.

Xu Y, Sun T, Yin LP (2006) Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. Journal of Integrative Plant Biology 48, 823–831.
Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVyqsrY%3D&md5=ab98d7b832201b6a2d098f74e083ed6bCAS |

Yan SL, Dong SS, Zhang RX, Shen YB (2014) Relationship of H2O2 accumulation and PM H+-ATPase in Arabidopsis thaliana guard cells response to MeJA. Acta Botanica. Boreali.-Occidentalia. Sinica 34, 0298–0303.