Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE (Open Access)

Verification of the cryptic species Penaeus pulchricaudatus in the commercially important kuruma shrimp P. japonicus (Decapoda : Penaeidae) using molecular taxonomy

K. H. Tsoi A , K. Y. Ma B , T. H. Wu C , S. T. Fennessy D , K. H. Chu C and T. Y. Chan E F
+ Author Affiliations
- Author Affiliations

A Department of Science and Environmental Studies, The Hong Kong Institute of Education, Tai Po, Hong Kong.

B Molecular Ecology and Evolution Laboratory, School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.

C Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.

D Oceanographic Research Institute, PO Box 10712, Marine Parade, Durban 4056, South Africa.

E Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.

F Corresponding author. Email: tychan@mail.ntou.edu.tw

Invertebrate Systematics 28(5) 476-490 https://doi.org/10.1071/IS14001
Submitted: 3 January 2014  Accepted: 5 June 2014   Published: 13 November 2014

Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND

Abstract

The kuruma shrimp Penaeus japonicus Bate, 1888 (Decapoda : Penaeidae) is economically important in the global shrimp market. It was regarded as the only species in the subgenus Marsupenaeus. However, our previous molecular analyses revealed two cryptic species (Forms I and II) in this species complex. In this study, we confirm the phylogenetic relatedness between the two cryptic species; revise their taxonomic status; and review their range distribution. The name Penaeus pulchricaudatus Stebbing, 1914 (with type-locality off the eastern coast of South Africa), previously considered as a junior synonym of P. japonicus, is fixed for Form II through a neotype selection. P. japonicus (Form I) is only confined to the East China Sea (including Japan, its type-locality) and the northern South China Sea. P. pulchricaudatus is widely distributed in the South China Sea, Australia, the Red Sea, the Mediterranean, and the western Indian Ocean. Phylogenetic analysis shows that P. japonicus is genetically homogeneous yet P. pulchricaudatus exhibits a strong phylogeographical structure. The Mediterranean stock of P. pulchricaudatus originated from the Red Sea population, supporting the Lessepsian migration hypothesis. The presence of two closely related cryptic species in the P. japonicus species complex provides important insights into fishery management and aquaculture development.


References

ASEAN, Association of Southeast Asian Nations (1978). ‘Manual on pond culture of penaeid shrimp. (UNDP: FAO). Available at http://www.fao.org/docrep/field/003/ac006e/ac006e00.htm [Verified September 2014]

Balss, H. (1927). Berichte uber die Crustacea Decapoda (Natantia und Anomura). Zoological results of the Cambridge expedition to the Suez Canal, 1924, XIV. Transactions of the Zoological Society of London 22, 221–230.
Berichte uber die Crustacea Decapoda (Natantia und Anomura). Zoological results of the Cambridge expedition to the Suez Canal, 1924, XIV. Crossref | GoogleScholarGoogle Scholar |

Benzie, J. A. H. (1998). Penaeid genetics and biotechnology. Aquaculture 164, 23–47.
Penaeid genetics and biotechnology. Crossref | GoogleScholarGoogle Scholar |

Chan, T. Y. (1998). Shrimps and prawns. In ‘The living marine resources of the western central Pacific, Vol. 2. FAO Species identification guide for fishery purposes. (Eds K. E. Carpenter and V. H. Niem) (FAO: Rome).

Chu, K. H., Li, C. P., Tam, Y. K., and Lavery, S. (2003). Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Molecular Ecology Notes 3, 120–122.
Application of mitochondrial control region in population genetic studies of the shrimp Penaeus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVyitrk%3D&md5=5b06f713d4d2237c0a9fb2c312fc1273CAS |

Chu, T. J., Huang, H. L., Shih, C. H., Lin, F. J., and Tzeng, T. D. (2011). Population structure and expansion of kuruma shrimp (Penaeus japonicus) in the adjacent waters of Taiwan inferred from intron sequences. African Journal of Biotechnology 10, 16994–17009.
| 1:CAS:528:DC%2BC3MXhs1ensb7K&md5=d65084537d8c86b07c8a228e03ab9ec7CAS |

Chuntapa, B., Powtongsook, S., and Menasveta, P. (2003). Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture 220, 355–366.
Water quality control using Spirulina platensis in shrimp culture tanks. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFagu7w%3D&md5=de031896a89f343e9cbb57a59eec88ffCAS |

Civera, R., and Guillaume, J. (1989). Effect of sodium phytate on growth and tissue mineralization of Penaeus japonicus and Penaeus vannamei juveniles. Aquaculture 77, 145–156.
Effect of sodium phytate on growth and tissue mineralization of Penaeus japonicus and Penaeus vannamei juveniles. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkt1anurY%3D&md5=76988789f8c4f4f51f681a50f291aa7fCAS |

Clark, P. F. (1990). Asian prawns go wild in the Channel. New Scientist 125, 30.

Coman, G., Crocos, P., Preston, N., and Fielder, D. (2002). Effect of genotype-environment interaction on the survival and growth of the kuruma shrimp Penaeus japonicus. Aquaculture 204, 197–198.

Dall, W. Hill, J. Rothlisberg, P. C., and Staples, D. J. (1990). The biology of Penaeidae. In ‘Advances in marine biology, Vol. 27’. (Eds J. H. S. Blaxter and A. J. Southward.) (Academic Press: New York.)

Dalla Via, G. J. (1986). Salinity responses of the juvenile penaeid shrimp Penaeus japonicus: I. Oxygen consumption and estimations of productivity. Aquaculture 55, 297–306.
Salinity responses of the juvenile penaeid shrimp Penaeus japonicus: I. Oxygen consumption and estimations of productivity. Crossref | GoogleScholarGoogle Scholar |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest2: more models, new heuristics and parallel computing. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=3cacc445e0743c5953b436bc2cf6a350CAS | 22847109PubMed |

De Francisco, A. K., and Galetti, P. M. J. (2005). Genetic distance between broodstocks of the marine shrimp Litopenaeus vannamei (Decapoda, Penaeidae) by mtDNA analyses. Genetics and Molecular Biology 28, 258–261.
Genetic distance between broodstocks of the marine shrimp Litopenaeus vannamei (Decapoda, Penaeidae) by mtDNA analyses. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslGgtLo%3D&md5=500085db182d3f7f8382497064f13eedCAS |

De Matthaeis, M., Allegrucci, G., Caccone, A., Cesaroni, D., Cobolli Sbordoni, M., and Sbordoni, V. (1983). Genetic differentiation between Penaeus kerathurus and P. japonicus (Crustacea, Decapoda). Marine Ecology Progress Series 12, 191–197.
Genetic differentiation between Penaeus kerathurus and P. japonicus (Crustacea, Decapoda). Crossref | GoogleScholarGoogle Scholar |

Delmendo, M. N. (1989). ‘Some advances attained in shrimp farming research and management practices: Insights to future prospects for expansion of production. (FAO: UN.)

Deshimaru, O., and Kuroki, K. (1979). Requirement of prawn for dietary thiamine, pyridoxine, and choline chloride. Bulletin of the Japanese Society of Scientific Fisheries 45, 363–367.
Requirement of prawn for dietary thiamine, pyridoxine, and choline chloride. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktVChs7s%3D&md5=4978fcd95057a03ca19d8f5a7128f943CAS |

DPI, Department of Primary Industry (2013). ‘Prawns aquaculture prospects. Available at: http://www.dpi.nsw.gov.au/fisheries/aquaculture/publications/species-saltwater/prawns [verified September 2014]

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1. 7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1. 7. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=beec25ccf0d2a98903aa512fd45babe5CAS | 22367748PubMed |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=0f644003e0450eab42e285b06371fbb5CAS | 15034147PubMed |

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin version. 3. 0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=0bca636798b72e718d584cd640b76be0CAS |

FAO, Food and Agriculture Organization of the United Nations (2014). ‘Species fact sheets Penaeus japonicus (Bate, 1888). Available at: http://www.fao.org/fishery/species/2584/en [verified September 2014]

Flegel, T. W. (2007). The right to refuse revision in the genus Penaeus. Aquaculture 264, 2–8.
The right to refuse revision in the genus Penaeus.Crossref | GoogleScholarGoogle Scholar |

Flegel, T. W. (2008). Confirmation of the right to refuse revision in the genus Penaeus. Aquaculture 280, 1–4.
Confirmation of the right to refuse revision in the genus Penaeus.Crossref | GoogleScholarGoogle Scholar |

Froukh, T., and Kochzius, M. (2007). Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea. Molecular Ecology 16, 1359–1367.
Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmur4%3D&md5=ba1f43ffc0ae9c6436e7f6fcd1a5e699CAS | 17391261PubMed |

Fu, Y. X., and Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics 133, 693–709.
| 1:STN:280:DyaK3s3gt1Crsw%3D%3D&md5=77d036e2d8d2f79033fb6256afd4960fCAS | 8454210PubMed |

Galil, B. S. (2006). ‘Marsupenaeus japonicus. Delivering Alien Invasive Species Inventories for Europe (DAISIE). Available at: http://www.europe-aliens.org/pdf/Marsupenaeus_japonicus.pdf.

Galil, B. S. (2012). Truth and consequences: The bioinvasion of the Mediterranean Sea. Integrative Zoology 7, 299–311.
Truth and consequences: The bioinvasion of the Mediterranean Sea. Crossref | GoogleScholarGoogle Scholar | 22938526PubMed |

Galil, B. S. and Zenetos, A. (2002). A sea change exotics in the eastern Mediterranean. In ‘Invasive Aquatic Species of Europe: Distributions, Impacts and Management’. (Eds E. Leppäkoski, S. Olenin and S. Gollasch.) pp. 325–336. (Kluwer Academic Publishers: Netherlands.)

Galil, B. S. Froglia, C., and Noël, P. (2002). CIESM atlas of exotic species in the Mediterranean. In ‘Crustaceans: Decapods and Stomatopods, Vol. 2’. (Ed F. Briand.) p. 192. (CIESM Publishers: Monaco.)

Gilberto, R., and Héctor, S. (2001). Anthropogenic dispersal of decapod crustaceans in aquatic environments. Interciencia 26, 282–288.

Golani, D., and Ritte, U. (1999). Genetic relationship in goatfishes (Mullidae: Perciformes) of the Red Sea and the Mediterranean, with remarks on Suez Canal migrants. Scientia Marina 63, 129–135.

Gopurenko, D., Hughes, J. M., and Keenan, C. P. (1999). Mitochondrial DNA evidence for rapid colonisation of the Indo-West Pacific by the mudcrab Scylla serrata. Marine Biology 134, 227–233.
Mitochondrial DNA evidence for rapid colonisation of the Indo-West Pacific by the mudcrab Scylla serrata.Crossref | GoogleScholarGoogle Scholar |

Hansford, S. W., McGuren, J. J., and Marsden, G. E. (1993). The effect of substrate type on the ovarian maturation of Penaeus japonicus Bate. Asian Fisheries Science 6, 283–293.

He, L., Zhang, A., Zhu, C., Weese, D., and Qiao, Z. (2011). Phylogeography of the mud crab (Scylla serrata) in the Indo-West Pacific reappraised from mitochondrial molecular and oceanographic clues: transoceanic dispersal and coastal sequential colonization. Marine Ecology (Berlin) 32, 52–64.
Phylogeography of the mud crab (Scylla serrata) in the Indo-West Pacific reappraised from mitochondrial molecular and oceanographic clues: transoceanic dispersal and coastal sequential colonization. Crossref | GoogleScholarGoogle Scholar |

Hewitt, D. R., and Duncan, P. F. (2001). Effect of high water temperature on the survival, moulting and food consumption of Penaeus (Marsupenaeus) japonicus (Bate, 1888). Aquaculture and Research 32, 305–313.
Effect of high water temperature on the survival, moulting and food consumption of Penaeus (Marsupenaeus) japonicus (Bate, 1888). Crossref | GoogleScholarGoogle Scholar |

Hirata, H. (1975). An introduction to the reaching methods of prawn Penaeus japonicus Bate, in Japan. Memoirs of the Faculty of Fisheries, Kagoshima University 24, 7–12.

Holthuis, L. B. (1980). Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. Fisheries Synopsis No. 125(1), pp. 1–271. (FAO: Rome.)

Hudinaga, M. (1935). Studies on the development of Penaeus japonicus (Bate). Hayatomo Fishery Institute report 1, 1–51.

Hudinaga, M. (1942). Reproduction, development and rearing of Penaeus japonicus Bate. Japan Journal of Zoology 10, 305–393.

Kanazawa, A., Teshima, S., and Tanaka, N. (1976). Nutritional requirements of prawn-V: Requirements for choline and inositol. Memoirs of the Faculty of Fisheries, Kagoshima University 25, 47–51.
| 1:CAS:528:DyaE2sXktlOkt78%3D&md5=e1766937afe1e95f636ca75ab8a90f98CAS |

Kevrekidis, K., and Kevrekidis, T. (1996). The occurrence of Penaeus japonicus in the Aegean Sea. Crustaceana 69, 925–929.
The occurrence of Penaeus japonicus in the Aegean Sea. Crossref | GoogleScholarGoogle Scholar |

Lavery, S., Chan, T. Y., Tam, Y. K., and Chu, K. H. (2004). Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s. l. derived from mitochondrial DNA. Molecular Phylogenetics and Evolution 31, 39–49.
Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s. l. derived from mitochondrial DNA. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSksrY%3D&md5=c1cbdb57919d171dd053d2d457626110CAS | 15019607PubMed |

Liao, I. C., and Chien, Y. H. (1990). Evaluation and comparison of culture practices for Penaeus japonicus, P. penicillatus and P. chinensis in Taiwan. In ‘The Culture of Cold-tolerant shrimp: Proceedings of an Asian–USA Workshop on Shrimp Culture’. (Eds K. L. Main and W. Fulks.) pp. 49–63. (The Oceanic Institute: Honolulu, HI. )

Liao, I. C., and Chien, Y. H. (1994). Culture of kuruma prawn (Penaeus japonicus) in Asia. World Aquaculture 25, 18–33.

Lumare, F. (1984). Stocking trials of Penaeus japonicus Bate (Decapoda, Natantia) postlarvae in Lesina Lagoon (Southeast coast of Italy). Management of coastal lagoon fisheries, FAO studies and Reviews No. 61, Vol. 2, pp. 593–606. (FAO: Rome.)

Lumare, F. (1987). Reproduction and larval rearing of penaeids. In ‘Production in Marine Hatcheries. Mediterranean regional Aquaculture Project’. (Ed. B. Loix.) pp. 147–179. (FAO: Rome.)

Lumare, F. (1998). Crostacei peneidi: tecnica e gestione dell’allevamento. In ‘Manuale di Divulgazione. Serie Acquacoltura No. 4. (Ente di Sviluppo Agricolo del Veneto: Legnaro.)

Lumare, F., and Casolino, G. (1986). First record of Penaeus japonicus Bate, 1888 (Decapoda Natantia) along Italian coasts. OEbalia (Taranto) 13, 179–183.

Lumare, F., and Palmegiano, G. B. (1980). Acclimatazione di Penaeus japonicus Bate nella Laguna di Lesina (Italia sud orientale). Rivista Italiana di Piscicultura e Ittiopatologia 15, 53–58.

Ma, K. Y., Chan, T. Y., and Chu, K. H. (2011). Refuting the six-genus classification of Penaeus s. l. (Dendrobranchiata, Penaeidae): a combined analysis of mitochondrial and nuclear genes. Zoologica Scripta 40, 498–508.
Refuting the six-genus classification of Penaeus s. l. (Dendrobranchiata, Penaeidae): a combined analysis of mitochondrial and nuclear genes. Crossref | GoogleScholarGoogle Scholar |

McLaughlin, P. A., Lemaitre, R., Ferrari, F. D., Felder, D. L., and Bauer, R. T. (2008). A reply to T. W. Flegel. Aquaculture 275, 370–373.
A reply to T. W. Flegel. Crossref | GoogleScholarGoogle Scholar |

McMillen-Jackson, A. L., and Bert, T. M. (2003). Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States. Molecular Ecology 12, 2895–2905.
Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States. Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srltFCitw%3D%3D&md5=1e44dcbfe6b7cbb17634a2eaf0aa7138CAS | 14629371PubMed |

Mock, C. R. (2009). The culture of Penaeus japonicus in Japan. Journal of the World Aquaculture Society 3, 285–286.

Nei, M. (1977). F-statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics 41, 225–233.
F-statistics and analysis of gene diversity in subdivided populations. Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c%2FnvFWnsg%3D%3D&md5=1603c0852e701cb0670311b7fadfc455CAS | 596830PubMed |

Okauchi, M. Kobayashi, M., and Mizukami, Y. (1995). Water quality management by unicellular algae in shrimp larviculture ponds. U. S. –Japan Cooperative Program in Natural Resources (UJNR). Technical Report 24, pp. 59–64.

Otero, M. Cebrian, E. Francour, P. Galil, B., and Savini, D. (2013). ‘Monitoring marine invasive species in Mediterranean Marine Protected Areas (MPAs): A strategy and practical guide for managers. (IUCN: Spain).

Pérez Farfante, I., and Kensley, B. (1997). Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. Mémoires du Museum national d’Histoire naturelle 175, 1–233.

Quero, J. C., and Vayne, J. J. (1998). ‘Les fruites de la mer et plantes marines des pèches Françaises. p. 256. (Delachaux Et Niestle: Lausanne.)

Quigley, D. T. G. (2010). Prawns and shrimps in Irish waters. The Irish Skipper August 2010, pp. 22–23.

Quigley, D. T. G., Herdson, D., and Flannery, K. (2013). Occurrence of the kuruma prawn Marsupenaeus japonicus (Spence Bate, 1888) in the Celtic Sea, English Channel, and North-West France. BioInvasions Records 2, 57–61.
Occurrence of the kuruma prawn Marsupenaeus japonicus (Spence Bate, 1888) in the Celtic Sea, English Channel, and North-West France. Crossref | GoogleScholarGoogle Scholar |

Quinitio, E. T., Parado-Estepa, F. D., and Coniza, E. (1991). Notes on the completion of the life cycle of Penaeus japonicus in captivity in the Philippines. Philippine Journal of Science 120, 155–158.

Rambaut, A., and Drummond, A. J. (2007). ‘Tracer v1. 4’, Available at: http://beast.bio.ed.ac.uk/Tracer [verified September 2014]

Rohlf, F. J. (1973). Algorithm 76. Hierarchical clustering using the minimum spanning tree. The Computer Journal 16, 93–95.

Savini, D. Occhipinti, A. Miossec, L. and Garcia-Berthou, E. (2008). Alien species fact sheets Marsupenaeus japonicus. In ‘Environmental Impacts of Alien Species in Aquaculture Sustainable Management of Europe’s Natural Resources’. (Eds S. Gollasch, I. G. Cowx and A. D. Nunn.) (University of Hull: UK. )

Sbordoni, V., De Matthaeis, E., Cobolli-Sbordoni, M., La Rosa, G., and Mattoccia, M. (1986). Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeus japonicus (Crustacea, Decapoda). Aquaculture 57, 239–251.
Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeus japonicus (Crustacea, Decapoda). Crossref | GoogleScholarGoogle Scholar |

Scordella, G. and Zecca, P. (2002). Shrimp farming in Italy: Status and perspectives. Global Aquaculture Advocate August 2002, 50–52.

Setiarto, A., Strüssmann, C. A., Takashima, F., Watanabe, S., and Yokota, M. (2004). Short-term responses of adult kuruma shrimp Marsupenaeus japonicus (Bate) to environmental salinity: osmotic regulation, oxygen consumption and ammonia excretion. Aquaculture and Research 35, 669–677.
Short-term responses of adult kuruma shrimp Marsupenaeus japonicus (Bate) to environmental salinity: osmotic regulation, oxygen consumption and ammonia excretion. Crossref | GoogleScholarGoogle Scholar |

Shefer, S., Abelson, A., Mokady, O., and Geffen, E. (2004). Red to Mediterranean Sea bioinvasion: Natural drift through the Suez Canal, or anthropogenic transport? Molecular Ecology 13, 2333–2343.
Red to Mediterranean Sea bioinvasion: Natural drift through the Suez Canal, or anthropogenic transport?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsl2rurY%3D&md5=fdefa30a1d7ef105840827d5b6864ef0CAS | 15245405PubMed |

Shigueno, K. (1975). ‘Shrimp culture in Japan. p. 153. (Tokyo: Association for International Technical Promotion)

Shigueno, K. (2001). Farming kuruma shrimp in Japan. Advocate (Boston, Mass.) February, 45–46.

Shih, C. H., Haung, H. L., Chu, T. J., Lee, Y. C., Wang, C. M., and Tzeng, T. D. (2011). Genetic diversity and historical demography of kuruma shrimp (Penaeus japonicus) species complex off China based on mitochondrial DNA analysis. African Journal of Biotechnology 10, 1065–1072.
| 1:CAS:528:DC%2BC3MXisl2gtLk%3D&md5=3ea82cc7ca8cabf811af5bfc8e8470b0CAS |

Sirna Terranova, M., Lo Brutto, S., Arculeo, M., and Mitton, J. B. (2006). Population structure of Brachidontes pharaonis (P. Fischer, 1870) (Bivalvia, Mytilidae) in the Mediterranean Sea, and evolution of a novel mtDNA polymorphism. Marine Biology 150, 89–101.
Population structure of Brachidontes pharaonis (P. Fischer, 1870) (Bivalvia, Mytilidae) in the Mediterranean Sea, and evolution of a novel mtDNA polymorphism. Crossref | GoogleScholarGoogle Scholar |

Stebbing, T. R. R. (1914). South African Crustacea. Annals of the South African Museum 15, 1–55.

Streftaris, N., and Zenetos, A. (2006). Alien marine species in the Mediterranean the 100 ‘worst invasives’ and their impact. Mediterranean Marine Science 7, 87–118.
Alien marine species in the Mediterranean the 100 ‘worst invasives’ and their impact. Crossref | GoogleScholarGoogle Scholar |

Sugaya, T., Ikeda, M., Mori, H., and Taniguchi, N. (2002). Inheritance mode of microsatellite DNA markers and their use for kinship estimation in kuruma prawn Penaeus japonicus. Fisheries Science 68, 299–305.
Inheritance mode of microsatellite DNA markers and their use for kinship estimation in kuruma prawn Penaeus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvV2qtLk%3D&md5=27a52c0264f3b06e42d314e8247222bdCAS |

Tajima, F. (1989). Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 1:CAS:528:DyaK3cXhslentA%3D%3D&md5=dd07b833dd833e71b0d9429c0036e936CAS | 2513255PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=5ee5a71f721d24a7782516dc0ff5fcfcCAS | 21546353PubMed |

Tan, S. H., Wang, G. Z., and Li, S. J. (2009). Sequence variability of mitochondrial 16S rRNA gene and genetic divergence of Marsupenaeus japonicus in the coastal waters of China. Acta Ecologica Sinica 29, 6805–6810.
| 1:CAS:528:DC%2BC3cXhtVWnt7k%3D&md5=f72a93061307e7c20805df1a2f34fed2CAS |

Taniguchi, N., and Han, H. (1989). Population genetic analyzes of fish and shellfish by isozymes. ‘Japanese fisheries resources conservation association report. (Japanese Fisheries Resources Conservation Association: Tokyo)

Tom, M., and Lewinsohn, C. (1983). Aspects of the benthic life cycle of Penaeus (Melicertus) japonicus Bate (Crustacea Decapoda) along the south-eastern coast of the Mediterranean. Fisheries Research 2, 89–101.
Aspects of the benthic life cycle of Penaeus (Melicertus) japonicus Bate (Crustacea Decapoda) along the south-eastern coast of the Mediterranean. Crossref | GoogleScholarGoogle Scholar |

Treece, D. G. (1999). Shrimp maturation and spawning. The United States–Japan Cooperative Program in Natural Resources (UJNR). Technical Report 28, pp. 123–134.

Tsoi, K. H., Wang, Z. Y., and Chu, K. H. (2005). Genetic divergence between two morphologically similar varieties of the kuruma shrimp Penaeus japonicus. Marine Biology 147, 367–379.
Genetic divergence between two morphologically similar varieties of the kuruma shrimp Penaeus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVClu7o%3D&md5=5d04d56931ff6523305390dc4e7ca12eCAS |

Tsoi, K. H., Chan, T. Y., and Chu, K. H. (2007). Molecular population structure of the kuruma shrimp Penaeus japonicus species complex in western Pacific. Marine Biology 150, 1345–1364.
Molecular population structure of the kuruma shrimp Penaeus japonicus species complex in western Pacific. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVGqurk%3D&md5=e9ba5d53e8a1da07156708204a4f6dccCAS |

Türkmen, G. (2007). Pond culture of Penaeus semisulcatus and Marsupenaeus japonicus (Decapoda, Penaeidae) on the West coast of Turkey. Turkish Journal of Fisheries and Aquatic Sciences 7, 7–11.

Tzeng, T. D., Yeh, S. Y., and Hui, C. F. (2004). Population genetic structure of the kuruma prawn (Penaeus japonicus) in East Asia inferred from mitochondrial DNA sequences. Journal of Marine Science 61, 913–920.
| 1:CAS:528:DC%2BD2cXotFGnur0%3D&md5=a651667b46e223004c10214ff31b2d53CAS |

Wang, K. X. (1997). ‘Crustacean Biology and Multiplication. (China Agriculture Press: Beijing.) [In Chinese.]

Yağlıoğlu, D., and Turan, C. (2012). Colonization and genetic changes of Indo-Pacific immigrant Saurida undosquamis (Richardson, 1948) (lizardfish) in the Mediterranean Sea. Journal of the Black Sea Mediterranean Environment 18, 329–340.

Yu, H. P., and Chan, T. Y. (1986). ‘The Illustrated Penaeoid Prawns of Taiwan. (Southern Materials Center: Taiwan.)

Zhou, H. (2001). Growth of intensive farmed kuruma shrimp (Penaeus japonicus Bate) in earthen ponds. Journal of Guangxi Academy of Sciences 17, 91–95.
| 1:CAS:528:DC%2BD3MXhvVShsrY%3D&md5=ec1d610f01fbc25642a59482e81ac5dcCAS |