Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Estimating the contribution of sympatric anadromous and freshwater resident brown trout to juvenile production

K. Charles A , J.-M. Roussel A C and R. A. Cunjak B
+ Author Affiliations
- Author Affiliations

A Institut National de la Recherche Agronomique, Laboratoire d’Ecologie Aquatique, UMR 985, 65 rue de St Brieuc, 35042 Rennes, France.

B Canadian Rivers Institute, University of New Brunswick, PO Box 4400, Loring Bailey Hall, Fredericton, NB E3B 5A3, Canada.

C Corresponding author. Email: roussel@roazhon.inra.fr

Marine and Freshwater Research 55(2) 185-191 https://doi.org/10.1071/MF03173
Submitted: 20 October 2003  Accepted: 19 February 2004   Published: 31 March 2004

Abstract

Carbon and nitrogen stable isotope analysis was used to study the reproductive contributions of anadromous and freshwater resident female brown trout (Salmo trutta L.) in La Roche Brook (Normandy, France), where both forms live in sympatry. Sixty-nine emerging fry were sampled by electrofishing in three different locations in the lower, middle and upper reaches of the stream, in March–April 2002. A collection of samples with known origin (brown trout eggs and fin tissues and benthic invertebrates) allowed classification of each emerging fry as the progeny of freshwater resident (δ13C = –26.0‰ ± 0.8 s.d.; δ15N = 12.5‰ ± 1.4 s.d.) or anadromous (δ13C = –18.8‰ ± 0.6 s.d., δ15N = 14.8‰ ± 0.9 s.d.) female brown trout. It was then possible to estimate the relative contribution (33%) of anadromous females to the population of fry that emerged from redds in 2002 and to evaluate the extent to which freshwater and anadromous spawning grounds overlapped in the stream.

Extra keywords: spawning migration, stable isotope ratios, 13C : 12C, 15N : 14N.


Acknowledgments

Financial support was provided by Le Conseil Régional de Basse-Normandie to K. Charles (doctoral fellowship). J-L. Baglinière made helpful suggestions during this work and comments by T. Jardine and anonymous reviewers enhanced the final draft. We are especially grateful to S. Azam for collecting the available scientific papers within this research area, and to R. Delanoë, D. Huteau, F. Marchand, M. Roucaute, A. McGeachy and J. Tremblay for laboratory and field assistance.


References

Baglinière, J. L. (1999). The brown trout (Salmo trutta L.): its origin, distribution and economic and scientific significance. In ‘Biology and Ecology of the Brown and Sea Trout’. (Eds. J. L. Baglinière and G. Maisse)  pp. 1–12. (Springer-Praxis: Chichester, UK.)

Baglinière, J. L. , Ombredane, D. , and Marchand, F. (2000). Critères morphologiques pour l’identification des deux formes (rivière et mer) de truite (Salmo trutta) présentes sur un même bassin. Bulletin Français de Pêche et de Pisciculture 357/360, 375–386.(English abstract)


Chang, C. Y. , Kendall, C. , Silva, R. S. , Battaglin, W. A. , and Campbell, D. H. (2002). Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River basin. Canadian Journal of Fisheries and Aquatic Sciences 59, 1874–1885.
Crossref | GoogleScholarGoogle Scholar |

Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133–149.
Crossref | GoogleScholarGoogle Scholar |

Davenport, S. R. , and Bax, N. J. (2002). A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen. Canadian Journal of Fisheries and Aquatic Sciences 59, 514–530.
Crossref | GoogleScholarGoogle Scholar |

DeNiro, M. J. , and Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495–506.
Crossref | GoogleScholarGoogle Scholar |

Doucett, R. R. , Power, G. , Barton, D. R. , Drimmie, R. J. , and Cunjak, R. A. (1996). Stable isotope analysis of nutrient pathways leading to Atlantic salmon. Canadian Journal of Fisheries and Aquatic Sciences 53, 2058–2066.
Crossref | GoogleScholarGoogle Scholar |

Doucett, R. R. , Hooper, W. , and Power, G. (1999). Identification of anadromous and nonanadromous brook trout and their progeny in the Tabusintac River, New Brunswick by means of multiple-stable-isotope analysis. Transactions of the American Fisheries Society 128, 278–288.


Eek, D. , and Bohlin, T. (1997). Strontium in scales verifies that sympatric sea-run and stream-resident brown trout can be distinguished by coloration. Journal of Fish Biology 51, 659–661.
Crossref | GoogleScholarGoogle Scholar |

Finlay, J. C. (2001). Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82, 1052–1064.


Finlay, J. C. (2003). Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry 62, 231–252.
Crossref | GoogleScholarGoogle Scholar |

Finlay, J. C. , Power, M. E. , and Cabana, G. (1999). Effects of water velocity on algal carbon isotopes ratios: implications for river food web studies. Limnology and Oceanography 44, 1198–1203.


Finlay, J. C. , Khandwala, S. , and Power, M. E. (2002). Spatial scales of carbon flow in a river food web. Ecology 83, 1845–1859.


France, R. L. , and Peters, R. H. (1997). Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Canadian Journal of Fisheries and Aquatic Sciences 54, 1255–1258.
Crossref | GoogleScholarGoogle Scholar |

Frost, W. E., and  Brown, M. E. (1967). ‘The Trout.’ (Collins: London, UK.)

Fry, B. (2002). Conservative mixing of stable isotopes across estuarine salinity gradients: a conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25(2), 264–271.


Fry, B. , and Sherr, B. (1984). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27, 13–47.


Gao, Y. W. , and Beamish, R. J. (1999). Isotopic composition of otoliths as a chemical tracer in population identification of sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences 56, 2062–2068.
Crossref | GoogleScholarGoogle Scholar |

Howland, K. L. , Tonn, W. M. , Babaluk, J. A. , and Tallman, R. F. (2001). Identification of freshwater and anadromous inconnu in the Mackenzie River system by analysis of otolith strontium. Transactions of the American Fisheries Society 130, 725–741.


Keough, J. R. , Hagley, C. A. , Ruzycki, E. , and Sierzen, M. (1998). Delta C-13 composition of primary producers and role of detritus in a freshwater coastal ecosystem. Limnology and Oceanography 43, 734–740.


Killeen, J. , McClay, H. A. , and Johnston, I. A. (1999). Development in Salmo trutta at different temperatures, with a quantitative scoring method for intraspecific comparisons. Journal of Fish Biology 55, 382–404.
Crossref | GoogleScholarGoogle Scholar |

Mariotti, A. (1983). Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687.


McAvoy, S. E. , Macko, S. A. , McInnich, S. P. , and Garman, G. C. (2000). Marine nutrient contributions of freshwater apex predators. Oecologia 122, 568–573.
Crossref | GoogleScholarGoogle Scholar |

McCarthy, I. D. , and Waldron, S. (2000). Identifying migratory Salmo trutta using carbon and nitrogen stable isotope ratios. Rapid Communications in Mass Spectrometry 14, 1325–1331.
Crossref | GoogleScholarGoogle Scholar |

McClelland, J. W. , Valiela, I. , and Michener, R. H. (1997). Nitrogen stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnology and Oceanography 42, 930–937.


Minagawa, W. , and Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 1135–1140.
Crossref | GoogleScholarGoogle Scholar |

Owens, N. P. J. (1987). Natural variations in 15N in the marine environment. Advances in Marine Biology 24, 389–451.


Peterson, B. J. , and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293–320.
Crossref | GoogleScholarGoogle Scholar |

Richard, A. , and Baglinière, J.-L. (1990). Description et interprétation des écailles de truite de mer (Salmo trutta L.) des deux rivières de Basse-Normandie: l’Orne et la Touques. Bulletin Francais de Pêche et de Pisciculture 319, 239–257.


Riera, P. , and Richard, P. (1996). Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuarine, Coastal and Shelf.  Science 42, 347–360.
Crossref | GoogleScholarGoogle Scholar |

Roussel, J.-M. , and Bardonnet, A. (1999). Ontogeny of diel pattern of stream-margin habitat use by emerging brown trout, Salmo trutta, in experimental channels: influence of food and predator presence. Environmental Biology of Fishes 56, 253–262.
Crossref | GoogleScholarGoogle Scholar |

Sokal, R. R., and  Rohlf, F. J. (1995). ‘Biometry.’ 3rd. edn. (W. H. Freeman & Co.: New York, USA.)

Tucker, J. , Sheats, N. , Giblin, A. E. , Hopkinson, C. S. , and Montoya, J. P. (1999). Using stable isotopes to trace sewage-derived material through Boston Harbor and Massachusetts Bay. Marine Environmental Research 48, 353–375.
Crossref | GoogleScholarGoogle Scholar |

Tan, F. C. , and Strain, P. M. (1983). Sources, sinks and distribution of organic carbon in the St Lawrence estuary, Canada. Geochimica et Cosmochimica Acta 47, 125–132.
Crossref | GoogleScholarGoogle Scholar |

Vander Zanden, M. J. , Hulshof, M. , Ridgway, M. S. , and Rasmussen, J. B. (1998). Application of stable isotope techniques to trophic studies of age-0 smallmouth bass. Transactions of the American Fisheries Society 127, 729–739.


Vander Zanden, M. J. , and Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46, 2061–2066.


Youngson, A. F. , Mitchell, A. I. , Noack, P. T. , and Laird, L. M. (1997). Carotenoid pigment profiles distinguish anadromous and nonanadromous brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 54, 1064–1066.
Crossref | GoogleScholarGoogle Scholar |

Zimmerman, C. E. , and Reeves, G. H. (2002). Identification of steelhead and resident Rainbow trout progeny in the Deschutes River Oregon, revealed with otolith microchemistry. Transactions of the American Fisheries Society 131, 986–993.