Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The influence of solar radiation on hydrogen peroxide concentrations in freshwater

Steven A. Rusak A E , Luc E. Richard A , Barrie M. Peake A , William J. Cooper B and Greg E. Bodeker C D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.

B Urban Water Research Center, The Henry Samueli School of Engineering,University of California, Irvine, CA 92697, USA.

C National Institute of Water and Atmospheric Research, Private Bag 50061, Omakau,Central Otago, New Zealand.

D Current address: Bodeker Scientific, 42 Young Lane, RD 1, Alexandra, New Zealand.

E Corresponding author. Email: stever@chemistry.otago.ac.nz

Marine and Freshwater Research 61(10) 1147-1153 https://doi.org/10.1071/MF10001
Submitted: 4 January 2010  Accepted: 11 May 2010   Published: 14 October 2010

Abstract

Hydrogen peroxide (H2O2) is the most stable of the reactive oxygen species produced by photochemical reactions in natural waters. To relate H2O2 concentrations to solar irradiance, we made daily measurements of H2O2 in the Water of Leith, a freshwater stream in Dunedin, New Zealand, and co-located continuous measurements of the intensity of solar radiation, from September 2003 to March 2006. A simple model in the form of a first-order differential equation was fitted to the measurements. The model describes the H2O2 concentrations over time by using photochemical production rates from ultraviolet-B (UVB), UVA and photosynthetically active radiation (PAR), and loss rates from temperature-dependent and temperature-independent processes. The retrieved model terms confirmed that H2O2 is produced by both UVB and UVA radiation. These results demonstrated that changes in solar radiation reaching the study site were closely correlated with the observed seasonal pattern in H2O2 concentrations in the water.

Additional keywords: photochemistry, reactive oxygen species.


Acknowledgements

The Energy Studies Program at the Department of Physics, University of Otago, provided solar radiation data. This is contribution 32 from the Urban Water Research Center at the University of California, Irvine.


References

Cooper W. J., and Lean D. R. S. (1992). Hydrogen peroxide dynamics in marine and fresh water systems. In ‘Encyclopedia of Earth System Science, Vol. 2’. (Ed. W. A. Nierenberg.) pp. 527–535. (Academic Press: San Diego.)

Cooper, W. J. , and Zika, R. G. (1983). Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220, 711–712.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Cooper W. J., Zika R. G., Petasne R. G., and Fischer A. M. (1989). Sunlight induced photochemistry of humic substances in natural waters: major reactive species. In ‘Influence of Aquatic Humic Substances on Fate and Treatment of Pollutants’. (Eds P. MacCarthy and I. H. Suffett.) pp. 333–362. Advances in Chemistry Series 219. (American Chemical Society: Washington, DC.)

Cooper W. J., Shao C., Lean D. R. S., Gordon A. S., and Scully F. E. (1994). Factors affecting the distribution of H2O2 in surface waters. In ‘Environmental Chemistry of Lakes and Reservoirs’. (Ed. L. A. Baker.) pp. 391–422. Advances in Chemistry Series 237. (American Chemical Society: Washington, DC.)

Cooper, W. J. , Moegling, J. K. , Kieber, R. J. , and Kiddle, J. J. (2000). A chemiluminescence method for the analysis of H2O2 in natural waters. Marine Chemistry 70, 191–200.
Crossref | GoogleScholarGoogle Scholar | CAS |

Hunter, K. A. , and Leonard, M. W. (1988). Colloid stability and aggregation in estuaries. 1. Aggregation kinetics of riverine dissolved iron after mixing with seawater. Geochimica et Cosmochimica Acta 52, 1123–1130.
Crossref | GoogleScholarGoogle Scholar | CAS |

Kieber, R. J. , and Helz, G. R. (1986). Two-method verification of hydrogen peroxide determinations in natural waters. Analytical Chemistry 58, 2312–2315.
Crossref | GoogleScholarGoogle Scholar | CAS |

King, D. W. , Cooper, W. J. , Rusak, S. A. , Peake, B. M. , Kiddle, J. J. , O’Sullivan, D. W. , Melamed, M. L. , Morgan, C. R. , and Theberge, S. M. (2007). Flow injection analysis of H2O2 in natural waters using acridinium ester-chemiluminescence: method development and optimization using a kinetic model. Analytical Chemistry 79, 4169–4176.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Kwan, W. P. , and Voelker, B. M. (2002). Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environmental Science & Technology 36, 1467–1476.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Kwan, W. P. , and Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental Science & Technology 37, 1150–1158.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Kwan, W. P. , and Voelker, B. M. (2004). Influence of electrostatics on the oxidation rates of organic compounds in heterogeneous Fenton systems. Environmental Science & Technology 38, 3425–3431.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

McKenzie, R. L. , Johnston, P. V. , Kotkamp, M. , Bittar, A. , and Hamlin, J. D. (1992). Solar ultraviolet spectroradiometry in New Zealand: instrumentation and sample results from 1990. Applied Optics 31, 6501–6509.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

McKenzie, R. L. , Connor, B. J. , and Bodeker, G. E. (1999). Increased summertime UV radiation in New Zealand in response to ozone loss. Science 285, 1709–1711.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

McKnight, D. M. , and Duren, S. M. (2004). Biogeochemical processes controlling midday ferrous iron maxima in stream waters affected by acid rock drainage. Applied Geochemistry 19, 1075–1084.
Crossref | GoogleScholarGoogle Scholar | CAS |

Miller, C. J. , Rose, A. L. , and Waite, T. D. (2009). Impact of natural organic matter on H2O2-mediated oxidation of Fe(II) in a simulated freshwater system. Geochimica et Cosmochimica Acta 73, 2758–2768.
Crossref | GoogleScholarGoogle Scholar | CAS |

Mostofa, K. M. G. , and Sakugawa, H. (2009). Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers. Environmental Chemistry 6, 524–534.
Crossref | GoogleScholarGoogle Scholar | CAS |

Richard, L. E. , Peake, B. M. , Rusak, S. A. , Cooper, W. J. , and Burritt, D. J. (2007). Production and decomposition dynamics of hydrogen peroxide in freshwater. Environmental Chemistry 4, 49–54.
Crossref | GoogleScholarGoogle Scholar | CAS |

Scott, D. T. , McKnight, D. M. , Voelker, B. M. , and Hrncir, D. C. (2002). Redox processes controlling manganese fate and transport in a mountain stream. Environmental Science & Technology 36, 453–459.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Scully, N. M. , McQueen, D. J. , Lean, D. R. S. , and Cooper, W. J. (1996). Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75°N gradient. Limnology and Oceanography 41, 540–548.
Crossref | GoogleScholarGoogle Scholar | CAS |

Southworth, B. A. , and Voelker, B. M. (2003). Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid. Environmental Science & Technology 37, 1130–1136.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Stuever Kaltenbach, M. , and Arnold, M. A. (1992). Acridinium ester chemiluminescence: pH dependent hydrolysis of reagents and flow injection analysis of hydrogen peroxide and glutamate. Mikrochimica Acta 108, 205–219.
Crossref | GoogleScholarGoogle Scholar |

Szymczak, R. , and Waite, T. D. (1988). Generation and decay of hydrogen peroxide in estuarine waters. Australian Journal of Marine and Freshwater Research 39, 289–299.
Crossref | GoogleScholarGoogle Scholar | CAS |

Vermilyea, A. W. , and Voelker, B. M. (2009). Photo-Fenton reaction at near neutral pH. Environmental Science & Technology 43, 6927–6933.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Voelker, B. M. , and Sulzberger, B. (1996). Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environmental Science & Technology 30, 1106–1114.
Crossref | GoogleScholarGoogle Scholar | CAS |

Voelker, B. M. , Morel, F. M. M. , and Sulzberger, B. (1997). Iron redox cycling in surface waters: effects of humic substances and light. Environmental Science & Technology 31, 1004–1011.
Crossref | GoogleScholarGoogle Scholar | CAS |

Xie, H. , Zafiriou, O. C. , Cai, W. J. , Zepp, R. G. , and Wang, Y. (2004). Photooxidation and its effects on the carbonyl content of dissolved organic matter in two coastal rivers in the southeastern United States. Environmental Science & Technology 38, 4113–4119.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Yocis, B. H. , Kieber, D. J. , and Mopper, K. (2000). Photochemical production of hydrogen peroxide in Antarctic waters. Deep-Sea Research. Part I, Oceanographic Research Papers 47, 1077–1099.
Crossref | GoogleScholarGoogle Scholar | CAS |