Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Physiological tools to predict invasiveness and spread via estuarine bridges: tolerance of Brazilian native and worldwide introduced freshwater fishes to increased salinity

Silvia Maria Millan Gutierre A , Jean Ricardo Simões Vitule B , Carolina Arruda Freire A and Viviane Prodocimo A C
+ Author Affiliations
- Author Affiliations

A Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, 81531-990, Brazil.

B Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Setor de Tecnologia, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil.

C Corresponding author. Email: vprodocimo@ufpr.br

Marine and Freshwater Research 65(5) 425-436 https://doi.org/10.1071/MF13161
Submitted: 10 April 2013  Accepted: 16 September 2013   Published: 20 December 2013

Abstract

Non-native freshwater fishes may spread via estuaries, invading nearby basins. The Brazilian natives Rhamdia quelen and Geophagus brasiliensis, and the worldwide introduced Clarias gariepinus, Ictalurus punctatus, Oreochromis niloticus and Cyprinus carpio were acutely exposed (6 h) to salinities 15 and 30. Hypothetically, the introduced species display greater physiological plasticity than do the natives. Exposure to salinity 30 was lethal after 1.5–3 h to all species except for O. niloticus and G. brasiliensis. Increase in plasma osmolality was inversely related to muscle water content, mainly in salinity 30 for all species. R. quelen and C. gariepinus displayed increased expression of heat-shock protein 70 (HSP70) on salinity increase; differently, I. punctatus, O. niloticus and C. carpio showed high constitutive levels already in freshwater. Species with high constitutive expression of HSP and/or high degree of euryhalinity (cichlids) could potentially use estuaries as bridges, especially through areas of salinity <15.

Additional keywords: biological invasions, environmental matching, heat-shock protein, muscle water, osmoregulation, physiological tolerance.


References

Al-Amoudi, M. M. (1987). Acclimation of commercially cultured Oreochromis species to sea water – an experimental study. Aquaculture 65, 333–342.
Acclimation of commercially cultured Oreochromis species to sea water – an experimental study.Crossref | GoogleScholarGoogle Scholar |

Alfieri, R. R., and Petronini, P. G. (2007). Hyperosmotic stress response: comparison with other cellular stresses. Pflügers Archiv – European Journal of Physiology 454, 173–185.
| 1:CAS:528:DC%2BD2sXjs1ektrs%3D&md5=e2045c3c16d24f85ab6bfdb621628fedCAS | 17206446PubMed |

Allen, K. O., and Avault, J. W. (1971). Notes on the relative salinity tolerance of channel and blue catfish. Progressive Fish-Culturist 33, 135–137.
Notes on the relative salinity tolerance of channel and blue catfish.Crossref | GoogleScholarGoogle Scholar |

Baldry, I. (2000). Effect of common carp (Cyprinus carpio) on aquatic restorations. Restoration and Reclamation Review 6, 1–8.

Bauer, C., and Schlott, G. (2006). Reaction of common carp (Cyprinus carpio, L.) to oxygen deficiency in winter as an example for the suitability of radio telemetry for monitoring the reaction of fish to stress factors in pond aquaculture. Aquaculture and Research 37, 248–254.
Reaction of common carp (Cyprinus carpio, L.) to oxygen deficiency in winter as an example for the suitability of radio telemetry for monitoring the reaction of fish to stress factors in pond aquaculture.Crossref | GoogleScholarGoogle Scholar |

Beatty, S. J., Morgan, D. L., Keleher, J., Allen, M. G., and Sarre, G. A. (2013). The tropical South American cichlid, Geophagus brasiliensis in Mediterranean climatic south-western Australia. Aquatic Invasions 8, 21–36.
The tropical South American cichlid, Geophagus brasiliensis in Mediterranean climatic south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Blackburn, T. M., Pysek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarosík, V., Wilson, J. R. U., and Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26, 333–339.
A proposed unified framework for biological invasions.Crossref | GoogleScholarGoogle Scholar |

Bockmann, F. A., and Guazzeli, G. M. (2003). Family Heptapteridae (heptapterids). In ‘Check List of the Freshwater Fishes of South and Central America’. (Eds R. E. Reis, S. O. Kullander and C. J. Ferraris.) pp. 406–443. (Edipucrs: Porto Alegre, Brazil.)

Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=fed908b93e773b70de68322507170bddCAS | 942051PubMed |

Braun, A. S., Milani, P. C. C., and Fontoura, N. F. (2003). Registro da introdução de Clarias gariepinus (Siluriformes, Clariidae) na Laguna dos Patos, Rio Grande do Sul, Brasil. Biociencias 11, 101–102.

Bringolf, R. B., Kwak, T. J., Cope, W. G., and Larimore, M. S. (2005). Salinity tolerance of flathead catfish: implications for dispersal of introduced populations. Transactions of the American Fisheries Society 134, 927–936.
Salinity tolerance of flathead catfish: implications for dispersal of introduced populations.Crossref | GoogleScholarGoogle Scholar |

Brown, J. A., Moore, W. M., and Quabius, E. S. (2001). Physiological effects of saline waters on zander. Journal of Fish Biology 59, 1544–1555.
Physiological effects of saline waters on zander.Crossref | GoogleScholarGoogle Scholar |

Brown, J. A., Scott, D. M., and Wilson, R. W. (2007). Do estuaries act as saline bridges to allow invasion of new freshwater systems by non-indigenous fish species? In ‘Biological Invaders in Inland Waters: Profiles, Distribution, and Threats’. (Ed. F. Gherardi.) pp. 401–414. (Springer: Dordrecht, The Netherlands.)

Cambray, J. A. (2003). The need for research and monitoring on the impacts of translocated sharp tooth catfish, Clarias gariepinus, in South Africa. African Journal of Aquatic Science 28, 191–195.
The need for research and monitoring on the impacts of translocated sharp tooth catfish, Clarias gariepinus, in South Africa.Crossref | GoogleScholarGoogle Scholar |

Canonico, G. C., Arthington, A., McCrary, J. K., and Thieme, M. L. (2005). The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 15, 463–483.
The effects of introduced tilapias on native biodiversity.Crossref | GoogleScholarGoogle Scholar |

Capps, K. A., Nico, L. G., Mendoza-Carranza, M., Arévalo-Frías, W., Ropecki, A. J., Heilprin, S. A., and Rodiles-Hernández, R. (2011). Salinity tolerance of non-native suckermouth armoured catfish (Loricariidae: Pterygoplichthys) in south-eastern Mexico: implications for invasion and dispersal. Aquatic Conservation: Marine and Freshwater Ecosystems 21, 528–540.
Salinity tolerance of non-native suckermouth armoured catfish (Loricariidae: Pterygoplichthys) in south-eastern Mexico: implications for invasion and dispersal.Crossref | GoogleScholarGoogle Scholar |

Cardona, L., Hereu, B., and Torras, X. (2008). Juvenile bottlenecks and salinity shape grey mullet assemblages in Mediterranean estuaries. Estuarine, Coastal and Shelf Science 77, 623–632.
Juvenile bottlenecks and salinity shape grey mullet assemblages in Mediterranean estuaries.Crossref | GoogleScholarGoogle Scholar |

Casal, C. M. V. (2006). Global documentation of fish introductions: the growing crisis and recommendations for action. Biological Invasions 8, 3–11.
Global documentation of fish introductions: the growing crisis and recommendations for action.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6: User Manual/Tutorial.’ (PRIMER-E: Plymouth, UK.)

Clavero, M., and García-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution 20, 110.
Invasive species are a leading cause of animal extinctions.Crossref | GoogleScholarGoogle Scholar |

Cucherousset, J., and Olden, J. D. (2011). Ecological impacts of non-native freshwater fishes. Fisheries (Bethesda, Md.) 36, 215–230.
Ecological impacts of non-native freshwater fishes.Crossref | GoogleScholarGoogle Scholar |

Dahlhoff, E. P. (2004). Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annual Review of Physiology 66, 183–207.
Biochemical indicators of stress and metabolism: applications for marine ecological studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1emtr8%3D&md5=cda46afdd9191f6317fc8d9207127f8fCAS | 14977401PubMed |

De Boeck, G., Vlaeminck, A., Van der Linden, A., and Blust, R. (2000). The energy metabolism of common carp (Cyprinus carpio) when exposed to salt stress: an increase in energy expenditure or effects of starvation? Physiological and Biochemical Zoology 73, 102–111.
The energy metabolism of common carp (Cyprinus carpio) when exposed to salt stress: an increase in energy expenditure or effects of starvation?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ltl2ntA%3D%3D&md5=fdceadc1de5f6e437da6ac484bb40b19CAS | 10685912PubMed |

De Graaf, G., and Janssen, H. (1996). Artificial reproduction and pond rearing of the African catfish Clarias gariepinus in sub-Saharan Africa. A handbook. In ‘FAO Fisheries Technical Paper.’ N° 362’. (Eds G. De Graaf and H. Janssen.) pp.1–73. (FAO: Rome.)

De Wachter, B., Scholliers, A., and Blust, R. (1998). Semiquantitative immunoblot detection of 70 kDa stress proteins in the carp Cyprinus carpio. Bulletin of Environmental Contamination and Toxicology 60, 37–44.
Semiquantitative immunoblot detection of 70 kDa stress proteins in the carp Cyprinus carpio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlSkug%3D%3D&md5=5f0197f81fc533f624b78d0b7f129391CAS | 9484554PubMed |

Deane, E. E., Kelly, S. P., Luk, J. C. Y., and Woo, N. Y. S. (2002). Chronic salinity adaptation modulates hepatic heat shock protein and insulin like growth factor I expression in black sea bream. Marine Biotechnology (New York, N.Y.) 4, 193–205.
| 1:CAS:528:DC%2BD38XkvV2gtL4%3D&md5=64dd0cf9dde5389bd279bae4a8060ceaCAS |

Evans, D. H., and Claiborne, J. B. (2009). Osmotic and ionic regulation in fishes. In ‘Osmotic and Ionic Regulation: Cells and Animals’. (Ed. D. H. Evans.) pp. 295–366. (CRC Press, Taylor and Francis Group: Boca Raton, FL.)

Evans, D. H., Piermarini, P. M., and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews 85, 97–177.
The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotFalsQ%3D%3D&md5=b39f628569701a0c01aa888b0a124e2eCAS | 15618479PubMed |

Fader, S. C., Yu, Z., and Spotila, J. R. (1994). Seasonal variation in heat shock proteins (hsp70) in stream fish under natural conditions. Journal of Thermal Biology 19, 335–341.
Seasonal variation in heat shock proteins (hsp70) in stream fish under natural conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1GlsLs%3D&md5=f9c719a858c7cae712c8fe8232c6cd8fCAS |

Florkin, M., and Schoffeniels, E. (1969). ‘Molecular Approaches to Ecology.’ (Academic Press: New York.)

Fontaínhas-Fernandes, A., Russell-Pinto, F., Gomes, E., Reis-Henriques, M. A., and Coimbra, J. (2001)). The effect of dietary sodium chloride on some osmoregulatory parameters of the teleost, Oreochromis niloticus, after transfer from freshwater to seawater. Fish Physiology and Biochemistry 23, 307–316.
The effect of dietary sodium chloride on some osmoregulatory parameters of the teleost, Oreochromis niloticus, after transfer from freshwater to seawater.Crossref | GoogleScholarGoogle Scholar |

Freire, C. A., Amado, E. M., Souza, L. R., Veiga, M. P. T., Vitule, J. R. S., Souza, M. M., and Prodocimo, V. (2008). Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comparative Biochemistry and Physiology. A. Comparative Physiology 149, 435–446.
Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity.Crossref | GoogleScholarGoogle Scholar |

Fuller, P. L., Nico, L. G., and Williams, J. D. (1999). ‘Nonindigenous Fishes Introduced into Inland Water of the United States.’ (American Fisheries Society Special Publication: Bethesda, MD.)

García, M. L., Cuello, M., Solari, A., Milessi, A. C., Cortés, F., Bruno, I. M., and Zapata, M. F. (2010). Is Oreochromis niloticus invading the Samborombón Bay, Río de la Plata, Argentina? Revista del Museo Argentino de Ciencias Naturales 12, 117–120.

Geddes, M. C. (1979). Salinity tolerance and osmotic behavior of european carp (Cyprinus carpio L.) from River Murray, Australia. Transactions of the Royal Society of South Australia 103, 185–189.

Gracey, A. Y., Chaney, M. L., Boomhower, J. P., Tyburczy, W. R., Connor, K., and Somero, G. N. (2008). Rhythms of gene expression in a fluctuating intertidal environment. Current Biology 18, 1501–1507.
Rhythms of gene expression in a fluctuating intertidal environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1entL7N&md5=e32a4a69b33bc3bacf36cc3be7c1391bCAS | 18848447PubMed |

Hofmann, G. E. (2005). Patterns of Hsp gene expression in ectothermic marine organisms on small to large biogeographic scales. Integrative and Comparative Biology 45, 247–255.
Patterns of Hsp gene expression in ectothermic marine organisms on small to large biogeographic scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt12rur0%3D&md5=195d91e10438e81e0032c064826b0882CAS | 21676768PubMed |

Houston, A. H., and Smeda, J. S. (1979). Thermoacclimatory changes in the ionic microenvironment of haemoglobin in the stenothermal rainbow trout (Salmo gairdneri) and eurythermal carp (Cyprinus carpio). The Journal of Experimental Biology 80, 317–340.
| 1:CAS:528:DyaE1MXltlOlt78%3D&md5=a3860e03f05f4f828d90dad544daf835CAS | 501276PubMed |

IPCC (2007). Climate change 2007: synthesis report. Summary for policymakers. An assessment of the Intergovernmental Panel on Climate Change. Available at http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf [accessed 17 May 2012].

Kamal, A. H., Md, M., and Mair, G. C. (2005). Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture 247, 189–201.
Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids.Crossref | GoogleScholarGoogle Scholar |

Kullander, S. O. (2003). Cichlidae (Cichlids). In ‘Checklist of the Freshwater Fishes of South and Central America’. (Eds R. E. Reis, S. O. Kullander and C. J. Ferraris Jr.) pp. 605–654. (EDIPUCRS: Porto Alegre, Brazil.)

Kültz, D. (1996). Plasticity and stressor specificity of osmotic and heat shock responses of Gillichthys mirabilis gill cells. The American Journal of Physiology 271, C1181–C1193.
| 8897824PubMed |

Kültz, D. (2005). DNA damage signals facilitate osmotic stress adaptation. The American Journal of Physiology 289, F504–F505.

Kwon, M. S., Lim, S. W., and Kwon, H. M. (2009). Hypertonic stress in the kidney: a necessary evil. Physiology (Bethesda, MD) 24, 186–191.
Hypertonic stress in the kidney: a necessary evil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVyitrc%3D&md5=5122ff05221afebedf47dd1cd3c48e61CAS | 19509128PubMed |

Langston, J. N., Schofield, P. J., Hill, J. E., and Loftus, W. F. (2010). Salinity tolerance of the African jewelfish Hemichromis letourneuxi, a non-native cichlid in south Florida (USA). Copeia 2010, 475–480.
Salinity tolerance of the African jewelfish Hemichromis letourneuxi, a non-native cichlid in south Florida (USA).Crossref | GoogleScholarGoogle Scholar |

Lima Jr, D. P., Pelicice, F. M., Vitule, J. R. S., and Agostinho, A. A. (2012). Aquicultura, política e meio ambiente no Brasil: novas propostas e velhos equívocos. Natureza and Conservação 10, 88–91.
Aquicultura, política e meio ambiente no Brasil: novas propostas e velhos equívocos.Crossref | GoogleScholarGoogle Scholar |

Lövei, G. L., Lewinsohn, T. M., and the Biological Invasions in Megadiverse Regions Network (2012). Megadiverse developing countries face huge risks from invasives. Trends in Ecology & Evolution 27, 2–3.
Megadiverse developing countries face huge risks from invasives.Crossref | GoogleScholarGoogle Scholar |

Lowe, S., Browne, M., Boudjelas, S., and De Poorter, M. (2000). 100 of the world’s worst invasive alien species. A selection from the global invasive species database. Published by The Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN, Auckland, New Zealand).

Lowe, M. R., Wu, W., Peterson, M. S., Brown-Peterson, N. J., Slack, W. T., and Schofield, P. J. (2012). Survival, growth and reproduction of non-native Nile tilapia II: fundamental niche projections and invasion potential in the northern Gulf of Mexico. PLoS One 7, e41580.
Survival, growth and reproduction of non-native Nile tilapia II: fundamental niche projections and invasion potential in the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCgurfP&md5=3267869d93ac3b7ab229957c89383e9dCAS | 22848533PubMed |

Luft, J. C., Wilson, M. R., Bly, J. E., Miller, N. W., and Clem, L. W. (1996). Identification and characterization of a heat shock protein 70 family member in channel catfish (Ictalurus punctatus). Comparative Biochemistry and Physiology. B. Comparative Biochemistry 113, 169–174.
Identification and characterization of a heat shock protein 70 family member in channel catfish (Ictalurus punctatus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FptVWnsQ%3D%3D&md5=2a3d043b8c662eaf635fc9655b6d8103CAS |

Marshall, W. S., and Grosell, M. (2006). Ion transport, osmoregulation and acid-base balance. In ‘The Physiology of Fishes’. (Eds D. H. Evans and J. B. Claiborne.) pp. 177–230. (CRC Press: Boca Raton, FL.)

Matsuzaki, S. S., Usio, N., Takamura, N., and Washitani, I. (2009). Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158, 673–686.
Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis.Crossref | GoogleScholarGoogle Scholar | 18941787PubMed |

Moyle, P. B., and Marchetti, M. P. (2006). Predicting invasion success: freshwater fishes in California as a model. Bioscience 56, 515–524.
Predicting invasion success: freshwater fishes in California as a model.Crossref | GoogleScholarGoogle Scholar |

Myers, G. S. (1949). Salt-tolerance of fresh-water fish groups in relation to zoogeographical problems. Bijdragen tot de Dierkunde 28, 315–322.

Nelson, J. S. (2006). ‘Fishes of the World.’ 4th edn. (John Wiley and Sons: Hoboken, NJ.)

Palmisano, A. N., Winton, J. R., and Dickhoff, W. W. (2000). Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Marine Biotechnology (New York, N.Y.) 2, 329–338.
| 1:CAS:528:DC%2BD3cXmtlehu74%3D&md5=82d8a4ef6a5089dd326ff4bfef938a0dCAS |

Perry, W. G. (1973). Notes on the spawning of blue and channel catfish in brackish water ponds. Progressive Fish-Culturist 35, 164–166.
Notes on the spawning of blue and channel catfish in brackish water ponds.Crossref | GoogleScholarGoogle Scholar |

Peterson, M. S., Slack, W. T., and Woodley, C. M. (2005). The occurrence of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus) in coastal Mississippi, USA: ties to aquaculture and thermal effluent. Wetlands 25, 112–121.
The occurrence of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus) in coastal Mississippi, USA: ties to aquaculture and thermal effluent.Crossref | GoogleScholarGoogle Scholar |

Rahel, F. J. (2007). Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology 52, 696–710.
Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all.Crossref | GoogleScholarGoogle Scholar |

Rahel, F. J., and Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22, 521–533.
Assessing the effects of climate change on aquatic invasive species.Crossref | GoogleScholarGoogle Scholar | 18577081PubMed |

Ricciardi, A., Hoopes, M. F., Marchetti, M., and Lockwood, J. L. (2013). Progress toward understanding the ecological impacts of non-native species. Ecological Monographs 83, 263–282.
Progress toward understanding the ecological impacts of non-native species.Crossref | GoogleScholarGoogle Scholar |

Schofield, P. J., and Nico, L. G. (2009). Salinity tolerance of non-native Asian swamp eels (Teleostei: Synbranchidae) in Florida, USA: comparison of three populations and implications for dispersal. Environmental Biology of Fishes 85, 51–59.
Salinity tolerance of non-native Asian swamp eels (Teleostei: Synbranchidae) in Florida, USA: comparison of three populations and implications for dispersal.Crossref | GoogleScholarGoogle Scholar |

Schofield, P. J., Peterson, M. S., Lowe, M. R., Brown-Peterson, N. J., and Slack, W. T. (2011). Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758).I. Physiological capabilities in various temperatures and salinities. Marine and Freshwater Research 62, 439–449.
Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758).I. Physiological capabilities in various temperatures and salinities.Crossref | GoogleScholarGoogle Scholar |

Schulz, U. H., and Leuchtenberger, C. (2006). Activity patterns of South American silver catfish (Rhamdia quelen). Brazilian Journal of Biology 66, 565–574.
Activity patterns of South American silver catfish (Rhamdia quelen).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vjvFSksA%3D%3D&md5=5f4f56b0d6b6b3eb7277e3386f089b0aCAS |

Scott, D. M., Wilson, R. W., and Brown, J. A. (2007). Can sunbleak Leucaspius delineatus or topmouth gudgeon Pseudorasbora parva disperse through saline waters? Journal of Fish Biology 71, 70–86.
Can sunbleak Leucaspius delineatus or topmouth gudgeon Pseudorasbora parva disperse through saline waters?Crossref | GoogleScholarGoogle Scholar |

Scott, D. M., Rabineau, J., Wilson, R. W., Hodgson, D. J., and Brown, J. A. (2008). Can pikeperch colonise new freshwater systems via estuaries? Evidence from behavioural salinity tests. Marine and Freshwater Research 59, 694–702.
Can pikeperch colonise new freshwater systems via estuaries? Evidence from behavioural salinity tests.Crossref | GoogleScholarGoogle Scholar |

Simberloff, D. (2009). The role of propagule pressure in biological invasion. Annual Review of Ecology Evolution and Systematics 40, 81–102.
The role of propagule pressure in biological invasion.Crossref | GoogleScholarGoogle Scholar |

Smith, T. R., Tremblay, G. C., and Bradley, T. M. (1999). Hsp70 and a 54 kDa protein (Osp54) are induced in salmon (Salmo salar) in response to hyperosmotic stress. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 284, 286–298.
Hsp70 and a 54 kDa protein (Osp54) are induced in salmon (Salmo salar) in response to hyperosmotic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOms70%3D&md5=68fa18dda2022c87d04cee6324066cafCAS |

Souza-Bastos, L. R., and Freire, C. A. (2009). The handling of salt by the neotropical cultured freshwater catfish Rhamdia quelen. Aquaculture 289, 167–174.
The handling of salt by the neotropical cultured freshwater catfish Rhamdia quelen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVShtrY%3D&md5=f26df02e050f50e52ec54d9a3b95985fCAS |

Stickney, R. R., and Simco, B. A. (1971). Salinity tolerance of catfish hybrids. Transactions of the American Fisheries Society 100, 790–792.
Salinity tolerance of catfish hybrids.Crossref | GoogleScholarGoogle Scholar |

Suresh, A. V., and Lin, C. K. (1992). Tilapia culture in saline waters – a review. Aquaculture 106, 201–226.
Tilapia culture in saline waters – a review.Crossref | GoogleScholarGoogle Scholar |

Tang, C. H., Tzeng, C. S., Hwang, L. Y., and Lee, T. H. (2009). Constant muscle water content and renal HSP90 expression reflect osmotic homeostasis in euryhaline teleosts acclimated to different environmental salinities. Zoological Studies 48, 435–441.
| 1:CAS:528:DC%2BD1MXhtFalu7jK&md5=6bbd25081ced2beec2d4b615721a6508CAS |

Townsend, C. R., and Winterbourn, M. J. (1992). Assessment of the environmental risk posed by an exotic fish: the proposed introduction of channel catfish (Ictalurus punctatus) to New Zealand. Conservation Biology 6, 273–282.
Assessment of the environmental risk posed by an exotic fish: the proposed introduction of channel catfish (Ictalurus punctatus) to New Zealand.Crossref | GoogleScholarGoogle Scholar |

Troca, D. F. A., and Vieira, J. P. (2012). Potencial invasor dos peixes não nativos cultivados na região costeira do Rio Grande do Sul, Brasil. Boletim do Instituto de Pesca 38, 109–120.

Vilizzi, L. (2012). The common carp, Cyprinus carpio, in the Mediterranean region: origin, distribution, economic benefits, impacts and management. Fisheries Management and Ecology 19, 93–110.
The common carp, Cyprinus carpio, in the Mediterranean region: origin, distribution, economic benefits, impacts and management.Crossref | GoogleScholarGoogle Scholar |

Vitule, J. R. S., Umbria, S. C., and Aranha, J. M. R. (2006). Introduction of the African catfish Clarias gariepinus (Burchell, 1822) into southern Brazil. Biological Invasions 8, 677–681.
Introduction of the African catfish Clarias gariepinus (Burchell, 1822) into southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Vitule, J. R. S., Freire, C. A., and Simberloff, D. (2009). Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10, 98–108.
Introduction of non-native freshwater fish can certainly be bad.Crossref | GoogleScholarGoogle Scholar |

Vitule, J. R. S., Lima Junior, D. P., Pelicice, F. M., Orsi, M., and Agostinho, A. A. (2012a). Preserve Brazil’s aquatic biodiversity. Nature 485, 309.
Preserve Brazil’s aquatic biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFyqu7s%3D&md5=c1deb36b1b0e41f22a00abca6d154eb7CAS |

Vitule, J. R. S., Freire, C. A., Vazquez, D. P., Nuñez, M. A., and Simberloff, D. (2012b). Revisiting the potential conservation value of non-native species. Conservation Biology 26, 1153–1155.
Revisiting the potential conservation value of non-native species.Crossref | GoogleScholarGoogle Scholar |

Vitule, J. R. S., Gazola da Silva, F. F., Bornatowski, H., and Abilhoa, V. (2013). Feeding ecology of fish in a coastal river of the Atlantic Rain Forest. Environmental Biology of Fishes 96, 1029–1044.
Feeding ecology of fish in a coastal river of the Atlantic Rain Forest.Crossref | GoogleScholarGoogle Scholar |

Wang, Y., Xu, J., Sheng, L., and Zheng, Y. (2007). Field and laboratory investigations of the thermal influence on tissue-specific Hsp70 levels in common carp (Cyprinus carpio). Comparative Biochemistry and Physiology. A. Comparative Physiology 148, 821–827.
Field and laboratory investigations of the thermal influence on tissue-specific Hsp70 levels in common carp (Cyprinus carpio).Crossref | GoogleScholarGoogle Scholar |

Weber, T. E., and Bosworth, B. G. (2005). Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish. Aquaculture 246, 483–492.
Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Ckt7k%3D&md5=2630ae438e541df1aa11b3d756581347CAS |

Willmer, P., Stone, G., and Johnston, I. (2005). ‘Environmental Physiology of Animals.’ 2nd edn. (Blackwell Science: Oxford.)

Yang, M. W., Huang, W. T., Tsai, M. J., Jiang, I. F., and Weng, C. F. (2009). Transient response of brain heat shock proteins 70 and 90 to acute osmotic stress in tilapia (Oreochromis mossambicus). Zoological Studies 48, 723–736.
| 1:CAS:528:DC%2BC3cXjvVaruw%3D%3D&md5=dd501d37d88db0893c565a97e78ee3d2CAS |