Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Diversity partitioning of a phytoplankton community in semiarid salterns

Raiane S. Costa A D , Joseline Molozzi A , Luiz U. Hepp C , Renato M. Rocha B and José E. L. Barbosa A
+ Author Affiliations
- Author Affiliations

A Department of Biology, Universidade Estadual da Paraíba (UEPB), Rua Baraúnas, 351, CEP 58429-500, Campina Grande, PB, Brazil.

B Department of Geography, Universidade Federal do Rio Grande do Norte (UFRN), Rua José Evaristo, CEP 59300-000, Caicó, RN, Brazil.

C Department of Biological Sciences, Universidade Regional do Alto Uruguai e das Missões – Erechim, Avenida Sete de Setembro, 1621, CEP 99709-910, Erechim, RS, Brazil.

D Corresponding author. Email: raianegeo@hotmal.com

Marine and Freshwater Research 67(2) 238-245 https://doi.org/10.1071/MF14210
Submitted: 18 July 2014  Accepted: 9 February 2015   Published: 17 June 2015

Abstract

Salterns consist of a series of interconnected evaporators that form sectors in the salterns. Their operation generates an increasing saline gradient, which influences species diversity. The present study was conducted in three salterns, with the goal of evaluating the diversity partitioning of phytoplankton along the saline gradient. We identified 65 taxa; the species richness was similar among the salterns, with higher values occurring in initial sectors and a downward trend with increasing salinity. In the partitioning analysis, the α diversity contributed 33.8% of the total diversity. The diversity variance showed a strong reduction from the α to β1 (33.8–6.3%). At higher scales, the highest species richness was found between salt marshes; however, there was lower diversity and a decrease in similarity from the lower to the higher scale. Therefore, we demonstrated that the greater variance in phytoplankton richness was at higher scales.

Additional keywords: additive partitioning, alpha diversity, beta diversity, hierarchical scales, salinity.


References

Allan, J. D. (1975). Components of diversity. Oecologia 18, 359–367.
Components of diversity.Crossref | GoogleScholarGoogle Scholar |

Anagnostidis, K., and Komárek, J. (1988). Modern approach to the classification system of cyanophytes, 3: Oscillatoriales. Algological Studies 50–53, 327–472.

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., and Swenson, N. G. (2011). Navigating the multiple meanings of b diversity: a roadmap for the practicing ecologist. Ecology Letters 14, 19–28.
Navigating the multiple meanings of b diversity: a roadmap for the practicing ecologist.Crossref | GoogleScholarGoogle Scholar | 21070562PubMed |

Ayadi, H., Abid, O., Elloumi, J., Bouaïn, A., and Sime-Ngando, T. (2004). Structure of the phytoplankton communities in two lagoons of different salinity in the Sfax salt marsh (Tunisia). Journal of Plankton Research 26, 669–679.
Structure of the phytoplankton communities in two lagoons of different salinity in the Sfax salt marsh (Tunisia).Crossref | GoogleScholarGoogle Scholar |

Barbosa, J. E. L., Watanabe, T., De Medeiros Rocha, R., and Souto, F. J. B. (2001). Distribuição espaço-temporal da comunidade fitoplanctônica e variáveis hidrológicas em uma salina artesanal do estado do Rio Grande do Norte, Brasil. Revista Nordestina de Biologia 15, 17–26.

Bevilacqua, S., Plicanti, A., Sandulli, R., and Terlizzi, A. (2012). Measuring more of β-diversity: quantifying patterns of variation in assemblage heterogeneity. An insight from marine benthic assemblages. Ecological Indicators 18, 140–148.
Measuring more of β-diversity: quantifying patterns of variation in assemblage heterogeneity. An insight from marine benthic assemblages.Crossref | GoogleScholarGoogle Scholar |

Britton, R. H., and Johnson, A. R. (1987). An ecological account of a Mediterranean saline: the Saline de Giraud, Camargue (S. France). Biological Conservation 42, 185–230.
An ecological account of a Mediterranean saline: the Saline de Giraud, Camargue (S. France).Crossref | GoogleScholarGoogle Scholar |

Copeland, B. J. (1976). Environmental characteristics of hypersaline lagoons. University of Texas Marine Science 12, 207–218.

Costa, D. F. S., De Medeiros Rocha, R., Barbosa, J. E. L., Soares, A. M. V. M., and Lillebo, A. I. (2014). Análise dos serviços ambientais prestados pelas salinas solares. Boletim Gaúcho de Geografia 41, 195–209.

Crist, T. O., Veech, J. A., Gering, J. C., and Summerville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. American Naturalist 162, 734–743.
Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity.Crossref | GoogleScholarGoogle Scholar | 14737711PubMed |

Cupp, E. (1943). Marine plankton diatoms of the west coast of North America. Bulletin of the scripps Institution of Oceanography 5, 1–238.
Marine plankton diatoms of the west coast of North America.Crossref | GoogleScholarGoogle Scholar |

Davis, J. S. (1978). Biological communities of a nutrient enriched salina. Aquatic Botany 4, 23–42.
Biological communities of a nutrient enriched salina.Crossref | GoogleScholarGoogle Scholar |

Davis, J. S. (2000). Structure, function, and management of the biological system for seasonal solar salt works. Global NEST Journal 2, 217–226.

De Medeiros Rocha, R., Costa, D. F. S., Lucena-Filho, M. A., Bezerra, R. M., Medeiros, D. H. M., Azevedo-Silva, A. M., Araujo, C. N., and Xavier-Filho, L. (2012). Brazilian solar saltworks – ancient uses and future possibilities. Aquatic Biosystems 8, 8.
Brazilian solar saltworks – ancient uses and future possibilities.Crossref | GoogleScholarGoogle Scholar | 22490329PubMed |

Evagelopoulos, A., Koutsoubas, D., Basset, A., Pinna, M., Dimitriadis, C., and Sangioirgio, F. (2008). Spatial and seasonal variability of the macrobenthic fauna in Mediterranean solar saltworks ecosystems. Aquatic Conservation: Marine & Freshwater Ecosystems 18, S118–S134.
Spatial and seasonal variability of the macrobenthic fauna in Mediterranean solar saltworks ecosystems.Crossref | GoogleScholarGoogle Scholar |

Forbes, A. T., and Cyrus, D. P. (1993). Biological effects of salinity gradient reversals in a southeast African estuarine lake. Netherlands Journal of Aquatic Ecology 27, 483–488.
Biological effects of salinity gradient reversals in a southeast African estuarine lake.Crossref | GoogleScholarGoogle Scholar |

Frontier, S. (1977). Réflexions pour une théorie des écosystèmes. Bulletin Ecology 8, 445–464.

Geddes, M. C., De Deckker, P., Williams, W. D., Morton, D. W., and Toffing, M. (1981). On the chemistry and biota of some saline lakes in Western Australia. Hydrobiologia 81–82, 201–222.
On the chemistry and biota of some saline lakes in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Hamdi, N., Charfi, F., and Moali, A. (2008). Variation of the waterbird community relying to the Ichkeul National Park, Tunisia. European Journal of Wildlife Research 54, 417–424.
Variation of the waterbird community relying to the Ichkeul National Park, Tunisia.Crossref | GoogleScholarGoogle Scholar |

Javor, B. J. (1989). Geology and chemistry. In ‘Hypersaline Environments: Biogeochemistry’. (Ed. T. D. Brock.) pp. 5–25. (Spinger-Velag: Berlin.)

Javornický, P., Soeder, C. J., Komárek, J., and Lhotský, O. (1973). Phycological Documentation Code. Algological Studies 9, 450–481.

Joint, I., Henriksen, P., Garde, K., and Riemann, B. (2002). Primary production, nutrient assimilation and microzooplankton grazing along a hypersaline gradient. FEMS Microbiology Ecology 39, 245–257.
Primary production, nutrient assimilation and microzooplankton grazing along a hypersaline gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFOjurg%3D&md5=535d4e84c34539b7f66e4fe49e0355ffCAS | 19709204PubMed |

Lande, R. (1996). Statistic and partitioning of species diversity, and similarity among multiple communities. Oikos 76, 5–13.
Statistic and partitioning of species diversity, and similarity among multiple communities.Crossref | GoogleScholarGoogle Scholar |

López, E., Aguilera, P. A., Schmitz, M. F., Castro, H., and Pineda, F. D. (2010). Selection of ecological indicators for the conservation, management and monitoring of Mediterranean coastal salines. Environmental Monitoring and Assessment 166, 241–256.
Selection of ecological indicators for the conservation, management and monitoring of Mediterranean coastal salines.Crossref | GoogleScholarGoogle Scholar | 19479329PubMed |

Magurran, A. E. (Ed.) (2004). ‘Measuring Biological Diversity.’ (Blackwell Science: Oxford, UK.)

Medeiros, A. M. A., Barbosa, J. E. L., Medeiros, P. R., Rocha, R. M., and Silva, L. F. (2010). Salinity and freshwater discharge determine rotifer distribution at the Mossoró River Estuary (semiarid region of Brazil). Brazilian Journal of Biology 70, 551–557.
| 1:STN:280:DC%2BC3cjms1SjtQ%3D%3D&md5=d02b9894961bcbce2e37cf7d7cad0b41CAS |

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H. (2012). Vegan: Community Ecology Package. R Package (Version 2.0-4). Available at http://CRAN.R-project.org/package=vegan [Verified 12 December 2013]

Oren, A., Sørensen, K. B., Canfield, D. E., Teske, A. P., Ionescu, D., Lipski, A., and Altendorf, K. (2009). Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626, 15–26.
Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1altbg%3D&md5=bb8ece808af7bed6eedf7c2f44c64bd9CAS |

Pedrós-Alió, C., Calderón-Paz, J. I., Maclean, M. H., Medina, G., Marrasé, C., Gasol, J. M., and Guixa-Boixereu, N. (2000). The microbial food web along salinity gradients. FEMS Microbiology Ecology 32, 143–155.
The microbial food web along salinity gradients.Crossref | GoogleScholarGoogle Scholar | 10817867PubMed |

Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics 5, 285–307.
The measurement of species diversity.Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2012). R: a Language and Environment for Statistical Computing (Version 3.0.3). (R Foundation for Statistical Computing: Vienna.) Available at http://www.R-project.org [Verified 15 December 2013]

Ribeiro, D. B., Prado, P. I., Brown, K. S., and Freitas, A. V. L. (2008). Additive partitioning of butterfly diversity in a fragmented landscape: importance of scale and implications for conservation. Diversity & Distributions 14, 961–968.
Additive partitioning of butterfly diversity in a fragmented landscape: importance of scale and implications for conservation.Crossref | GoogleScholarGoogle Scholar |

Silva, A. M. A., Barbosa, J. E. L., Medeiros, P. R., De Medeiros Rocha, R., Lucena-Filho, M. A., and Costa, D. F. S. (2009). Zooplankton (Cladocera and Rotifera) variations along a horizontal salinity gradient and during two seasons (dry and rainy) in a tropical inverse estuary (northeast Brazil). Pan-American Journal of Aquatic Sciences 4, 226–238.

Tenenbaum, D. R., Villac, M. C., Viana, S. C., Matos, M., Hatherly, M., Lima, I. V., and Medeiros, M. (2004). ‘Phytoplankton Atlas os Sepetiba Bay, Rio de Janeiro, Brasil.’ GloBallast Monograph Series 16. (International Maritime Organization: London.) Available at http://globallast.imo.org/wp-content/uploads/2014/11/Mono16.pdf [Verified].

Townsend, C. R., Dolédec, S., Norris, R., Peacock, K., and Arbuckle, C. (2003). The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48, 768–785.
The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction.Crossref | GoogleScholarGoogle Scholar |

Tucci, A., Sant’Ana, C. L., Azevedo, M. T. P., Melcher, S. S., Werner, V. R., Malone, C. F. S., Rossini, E. F., Jacinavicius, F. R., Hentschke, G. S., Osti, J. A. S., Santos, K. R. S., Gama Junior, W. A., Rosal, C., and Adame, G. (Eds) (2012). ‘Atlas de Cianobactérias e Microalgas de Águas Continentais Brasileiras.’ (Instituto de Botânica: São Paulo, Brazil.)

Uherkovich, G. (Ed.) (1966). ‘Die Scenedesmus-arten Ungarns.’ (Akadémiai Kiadó: Budapest.)

Vellend, M. (2010). Conceptual synthesis in community ecology. The Quarterly Review of Biology 85, 183–206.
Conceptual synthesis in community ecology.Crossref | GoogleScholarGoogle Scholar | 20565040PubMed |

Whittaker, R. H. (1960). Vegetation of the Siskiyou moutains, Oregon and California. Ecological Monographs 30, 279–338.
Vegetation of the Siskiyou moutains, Oregon and California.Crossref | GoogleScholarGoogle Scholar |

Williams, W. D. (1993). Conservation of salt lakes. Hydrobiologia 267, 291–306.
Conservation of salt lakes.Crossref | GoogleScholarGoogle Scholar |

Williams, W. D. (1998). Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381, 191–201.
Salinity as a determinant of the structure of biological communities in salt lakes.Crossref | GoogleScholarGoogle Scholar |