Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Zinc and nickel binary mixtures act additively on the tropical mysid Mysidopsis juniae

Lívia Pitombeira de Figuerêdo A , Jeamylle Nilin B , Allyson Queiroz da Silva A , Évila Pinheiro Damasceno A , Susana Loureiro C D and Letícia Veras Costa-Lotufo A D
+ Author Affiliations
- Author Affiliations

A Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará, 60165-081 Fortaleza, Ceará, Brazil.

B Departamento de Ecologia, Universidade Federal de Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil.

C Department of Biology and CESAM, University of Aveiro, PT-3810-193 Aveiro, Portugal.

D Corresponding authors. Email: costalotufo@gmail.com; sloureiro@ua.pt

Marine and Freshwater Research 67(3) 301-308 https://doi.org/10.1071/MF14363
Submitted: 3 September 2014  Accepted: 12 February 2015   Published: 1 July 2015

Abstract

Heavy metals may appear in the environment as a result of different anthropogenic activities, such as agriculture practices, industry and mining. They can reach aquatic environments as complex mixtures, and single chemical toxicity as a baseline for risk assessment can underestimate the impairment of ecosystems. The aim of the present study was to evaluate combined toxicity of binary mixtures of zinc and nickel to the tropical mysid Mysidopsis juniae. Acute toxicity was assessed and mixture toxicity was modelled using the conceptual models for concentration addition and independent action to predict whether both metals act additively or whether they interact with each other inside the organism. For that, the observed mortality data were compared with the modelled data. For the single toxicity assessment, results showed that nickel induced higher toxicity than did zinc, with lethal concentrations to 50% of the organisms of 180 ± 30 μg L–1 and 260 ± 40 μg zinc L–1 respectively. In binary mixtures, both metals acted additively and no interactions were predicted by using the conceptual models. The present study has highlighted the need to fill the gaps in toxicity studies using marine species and approaches that can help improve the assessment of accurate risk in the environment.

Additional keywords: additivity, marine species, mixture toxicity.


References

ABNT (2011) NBR 15308. Ecotoxicologia aquática: toxicidade aguda – método de ensaio com misídeos (Crustacea). Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil.

Ahsanullah, M., Negilski, D. S., and Mobley, M. C. (1981). Toxicity of zinc, cadmium and copper to the shrimp Callianassa australiensis. I. Effects of individual metals. Marine Biology 64, 299–304.
| 1:CAS:528:DyaL38XhsFyitg%3D%3D&md5=756ffb9437ed3dedfb15a91c97d93a5bCAS |

Altenburger, R., Walter, H., and Grote, M. (2004). What contributes to the combined effect of a complex mixture? Environmental Science & Technology 38, 6353–6362.
What contributes to the combined effect of a complex mixture?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1ehu74%3D&md5=2a30f0b46b2881e23a02c71b91acbe30CAS |

APHA, AWWR, and WEF (2005). ‘Standard Methods for the Examination of Water and Wastewater.’ (American Public Health Association: Washington, DC.)

Baudouin, M. F., and Scoppa, P. (1974). Acute toxicity of various metals to freshwater zooplankton. Bulletin of Environmental Contamination and Toxicology 12, 745–751.
Acute toxicity of various metals to freshwater zooplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhsFSjtb0%3D&md5=5747eeb42ab2d44263bd047437435569CAS | 4457186PubMed |

Berg, J. M. (1990). Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. The Journal of Biological Chemistry 265, 6513–6516.
| 1:CAS:528:DyaK3cXktVaisrs%3D&md5=65a41b11a27fa274249318d0ae5c6c5fCAS | 2108957PubMed |

Bliss, C. I. (1939). The toxicity of poisons applied jointly. Annals of Applied Biology 26, 585–615.
The toxicity of poisons applied jointly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3cXhtFWq&md5=7790fc24ccd284d7e2495ce58d882901CAS |

Cherkashin, S. A., and Blinova, N. K. (2010). Effect of heavy metals on survival of crustaceans. Hydrobiological Journal 46, 76–87.
Effect of heavy metals on survival of crustaceans.Crossref | GoogleScholarGoogle Scholar |

Durán, I., and Beiras, R. (2013). Ecotoxicologically based marine acute water quality criteria for metals intended for protection of coastal areas. The Science of the Total Environment 463–464, 446–453.
Ecotoxicologically based marine acute water quality criteria for metals intended for protection of coastal areas.Crossref | GoogleScholarGoogle Scholar | 23831790PubMed |

Eisler, R. (1998). ‘Copper Hazards to Fish, Wildlife, and Invertebrates [microform]: a Synoptic Review/by Ronald Eisler.’ (US Department of the Interior, US Geological Survey: Washington, DC.)

Eisler, R., and Hennekey, R. (1977). Acute toxicities of Cd2+, Cr+6, Hg2+, Ni2+ and Zn2+ to estuarine macrofauna. Archives of Environmental Contamination and Toxicology 6, 315–323.
Acute toxicities of Cd2+, Cr+6, Hg2+, Ni2+ and Zn2+ to estuarine macrofauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhs1yitQ%3D%3D&md5=1ff4dd9d66cefc2286ee0cebe9bd29b7CAS | 901010PubMed |

Ferreira, A. L. G., Loureiro, S., and Soares, A. M. V. M. (2008). Toxicity prediction of binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna. Aquatic Toxicology 89, 28–39.
Toxicity prediction of binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslegtbg%3D&md5=a17e8da7a3cf33f62528b2da50142792CAS |

Franco, J. L., Trivella, D. B. B., Trevisan, R., Dinslaken, D. F., Marques, M. R. F., Bainy, A. C. D., and Dafre, A. L. (2006). Antioxidant status and stress proteins in the gills of the brown mussel Perna perna exposed to zinc. Chemico-Biological Interactions 160, 232–240.
Antioxidant status and stress proteins in the gills of the brown mussel Perna perna exposed to zinc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFaitL0%3D&md5=e69ac2539b36402586b42987c8bd2360CAS | 16564039PubMed |

Gentile, J. H., Gentile, S. M., Hairston, N. G., and Sullivan, B. K. (1982). The use of life-tables for evaluating the chronic toxicity of pollutants to Mysidopsis bahia. Hydrobiologia 93, 179–187.
The use of life-tables for evaluating the chronic toxicity of pollutants to Mysidopsis bahia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmtV2kurg%3D&md5=9918c277168aa6ce372b8a79ae450345CAS |

Gissi, F., Binet, M. T., and Adams, M. S. (2013). Acute toxicity testing with the tropical marine copepod Acartia sinjiensis: optimisation and application. Ecotoxicology and Environmental Safety 97, 86–93.
Acute toxicity testing with the tropical marine copepod Acartia sinjiensis: optimisation and application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1KgsbvF&md5=570a8aacd154cf21793de5581a458134CAS | 23932510PubMed |

Gopal, R., Narmada, S., Vijayakumar, R., and Jaleel, C. A. (2009). Chelating efficacy of CaNa2 EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation. Comptes Rendus Biologies 332, 685–696.
Chelating efficacy of CaNa2 EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVShs78%3D&md5=dee5184742abc6780dd73d7443020f7bCAS | 19632651PubMed |

Hershfinkel, M., Moran, A., Grossman, N., and Sekler, I. (2001). A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proceedings of the National Academy of Sciences of the United States of America 98, 11749–11754.
A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt12jtr8%3D&md5=bffd374f876fa800b9b479079582ac29CAS | 11573009PubMed |

Hunt, J. W., Anderson, B. S., Turpen, S. L., Englund, M. A., and Piekarski, W. (1997). Precision and sensitivity of a seven-day growth and survival toxicity test using the west coast marine mysid crustacean Holmesimysis costata. Environmental Toxicology and Chemistry 16, 824–834.
Precision and sensitivity of a seven-day growth and survival toxicity test using the west coast marine mysid crustacean Holmesimysis costata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12lur8%3D&md5=b8be1d86b0c6dd2a165ce192468881d4CAS |

Hunt, J. W., Anderson, B. S., Phillips, B. M., Tjeerdema, R. S., Puckett, H. M., Stephenson, M., Tucker, D. W., and Watson, D. (2002). Acute and chronic toxicity of nickel to marine organisms: implications for water quality criteria. Environmental Toxicology and Chemistry 21, 2423–2430.
Acute and chronic toxicity of nickel to marine organisms: implications for water quality criteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVGntrY%3D&md5=e7262703b7cc553ca2a3e44b81c0936bCAS | 12389922PubMed |

Jonker, M. J., Piskiewicz, A. M., Castellà, N. I. I., and Kammenga, J. E. (2004). Toxicity of binary mixtures of cadmium-copper and carbendazim-copper to the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry 23, 1529–1537.
Toxicity of binary mixtures of cadmium-copper and carbendazim-copper to the nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1yltr8%3D&md5=6919ca2e4d5dbda3989a74a06441fd8bCAS | 15376539PubMed |

Jonker, M. J., Svendsen, C., Bedaux, J. J. M., Bongers, M., and Kammenga, J. E. (2005). Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environmental Toxicology and Chemistry 24, 2701–2713.
Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKqt7fM&md5=4b92d92d33bed1e677fc381e020429cbCAS | 16268173PubMed |

Lee, K. W., Raisuddin, S., Hwang, D. S., Park, H. G., and Lee, J. S. (2007). Acute toxicities of trace metals and common xenobiotics to the marine copepod Tigriopus japonicus: evaluation of its use as a benchmark species for routine ecotoxicity tests in western Pacific coastal regions. Environmental Toxicology 22, 532–538.
Acute toxicities of trace metals and common xenobiotics to the marine copepod Tigriopus japonicus: evaluation of its use as a benchmark species for routine ecotoxicity tests in western Pacific coastal regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeltrrK&md5=05096f84608de51abce4982574a460a3CAS | 17696134PubMed |

Liu, W.-h., Zhao, J.-z., Ouyang, Z.-y., Söderlund, L., and Liu, G.-h. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International 31, 805–812.
Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVKnur4%3D&md5=2cb1c618790d04c06350349d605f0ac2CAS | 15979146PubMed |

Loewe, S., and Muischnek, H. (1926). Combinated effects I announcement: implements to the problem. Naunyn-Schmiedebergs Archiv fur Experimentelle Pathologie und Pharmakologie 114, 313–326.
Combinated effects I announcement: implements to the problem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB2sXitFCm&md5=ee7c06f786ef14d9e5b0e284b8a51665CAS |

Loureiro, S., Svendsen, C., Ferreira, A. L. G., Pinheiro, C., Ribeiro, F., and Soares, A. M. V. M. (2010). Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models. Environmental Toxicology and Chemistry 29, 1716–1726.
Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSju73L&md5=72369fc7222b4c96ce14703cbcc9de5eCAS | 20821624PubMed |

Lussier, S. M., Gentile, J. H., and Walker, J. (1985). Acute and chronic effects of heavy metals and cyanide on Mysidopsis bahia (crustacea:mysidacea). Aquatic Toxicology 7, 25–35.
Acute and chronic effects of heavy metals and cyanide on Mysidopsis bahia (crustacea:mysidacea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvVOk&md5=d97d837c1100137d322d7100f99dd866CAS |

Martin, M., Hunt, J. W., Anderson, B. S., Turpen, S. L., and Palmer, F. H. (1989). Experimental evaluation of the mysid Holmesimysis costata as a test organism for effluent toxicity testing. Environmental Toxicology and Chemistry 8, 1003–1012.
Experimental evaluation of the mysid Holmesimysis costata as a test organism for effluent toxicity testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFSgs78%3D&md5=e4751bde50574d6aaf6babbec388b53fCAS |

Mebane, C. A., Dillon, F. S., and Hennessy, D. P. (2012). Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates. Environmental Toxicology and Chemistry 31, 1334–1348.
Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlWntrw%3D&md5=71cd4fca383ccd588276c2219fc99939CAS | 22488500PubMed |

Misra, M., Rodriguez, R. E., and Kasprzak, K. S. (1990). Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense systems. Toxicology 64, 1–17.
Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1Kjsr4%3D&md5=cc89e1292f5fbb771ce036e62092eb3dCAS | 1977209PubMed |

Nipper, M., Badaró-Pedroso, C., José, V. F., and Melo, S. L. R. (1993). Toxicity testing with coastal species of southeastern Brazil. Mysids and copepods. Bulletin of Environmental Contamination and Toxicology 51, 99–106.
Toxicity testing with coastal species of southeastern Brazil. Mysids and copepods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVamtL0%3D&md5=171bc8040fe47e59aba6e82f6072f724CAS | 8318781PubMed |

Nriagu, J. O., and Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 134–139.
Quantitative assessment of worldwide contamination of air, water and soils by trace metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFSqsrw%3D&md5=f94da0e4ca72c89458162e9feee85710CAS | 3285219PubMed |

Otitoloju, A. A. (2002). Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var. radula (L.). Ecotoxicology and Environmental Safety 53, 404–415.
Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var. radula (L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFyitrw%3D&md5=bbd0444104ee14dc5a0846c82e8213e3CAS | 12485585PubMed |

Otitoloju, A. A. (2003). Relevance of joint action toxicity evaluations in setting realistic environmental safe limits of heavy metals. Journal of Environmental Management 67, 121–128.
Relevance of joint action toxicity evaluations in setting realistic environmental safe limits of heavy metals.Crossref | GoogleScholarGoogle Scholar | 12654273PubMed |

Phillips, B. M., Nicely, P. A., Hunt, J. W., Anderson, B. S., Tjeerdema, R. S., Palmer, S. E., Palmer, F. H., and Puckett, H. M. (2003). Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus). Bulletin of Environmental Contamination and Toxicology 70, 592–599.
Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGmtrg%3D&md5=2799f5ca905402c6534a182e169f2432CAS | 12592536PubMed |

Prophete, C., Carlson, E. A., Li, Y., Duffy, J., Steinetz, B., Lasano, S., and Zelikoff, J. T. (2006). Effects of elevated temperature and nickel pollution on the immune status of Japanese medaka. Fish & Shellfish Immunology 21, 325–334.
Effects of elevated temperature and nickel pollution on the immune status of Japanese medaka.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFCntL8%3D&md5=b8944288d2340a2d218e4e8d5b4cd4c1CAS |

Ptashynski, M. D., Pedlar, R. M., Evans, R. E., Wautier, K. G., Baron, C. L., and Klaverkamp, J. F. (2001). Accumulation, distribution and toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis) and lake trout (Salvelinus namaycush). Comparative Biochemistry and Physiology. Part C. Toxicology & Pharmacology 130, 145–162.
Accumulation, distribution and toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis) and lake trout (Salvelinus namaycush).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrivVSlsA%3D%3D&md5=c238c82d483b869d3f23af7016cc0ac7CAS |

Ptashynski, M. D., Pedlar, R. M., Evans, R. E., Baron, C. L., and Klaverkamp, J. F. (2002). Toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis). Aquatic Toxicology 58, 229–247.
Toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVWjtLg%3D&md5=b3262c07ca7ceffeaf9512695e11023fCAS | 12007877PubMed |

Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution 120, 497–507.
Trace metal concentrations in aquatic invertebrates: why and so what?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsF2kt7w%3D&md5=4be3e51dca10d7e752fda9ec688bb38fCAS | 12442773PubMed |

Ribeiro, F., Ferreira, N. C. G., Ferreira, A., Soares, A. M. V. M., and Loureiro, S. (2011). Is ultraviolet radiation a synergistic stressor in combined exposures? The case study of Daphnia magna exposure to UV and carbendazim. Aquatic Toxicology 102, 114–122.
Is ultraviolet radiation a synergistic stressor in combined exposures? The case study of Daphnia magna exposure to UV and carbendazim.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVygurs%3D&md5=6e5be5fad1acffd204a3ad1715404d20CAS | 21333264PubMed |

Roast, S.D., Thompson, R.S., Widdows, B.J., and Jones, M.B. (1998). Mysids and environmental monitoring: a case for their use in estuaries. Marine and Freshwater Research 49, 827–832.
Mysids and environmental monitoring: a case for their use in estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsV2nt78%3D&md5=8141a85a321b2cda5beb252b4a7c07e4CAS |

Sandstead, H. H. (2000). Causes of iron and zinc deficiencies and their effects on brain. The Journal of Nutrition 130, 347–349.

Sarabia, R., Del Ramo, J., Varó, I., Díaz-Mayans, J., and Torreblanca, A. (2008). Sublethal zinc exposure has a detrimental effect on reproductive performance but not on the cyst hatching success of Artemia parthenogenetica. The Science of the Total Environment 398, 48–52.
Sublethal zinc exposure has a detrimental effect on reproductive performance but not on the cyst hatching success of Artemia parthenogenetica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVaqsr0%3D&md5=e7d0af544ca0968af5ac7733575e9ec9CAS | 18420254PubMed |

Shaw, J. R., Dempsey, T. D., Chen, C. Y., Hamilton, J. W., and Folt, C. L. (2006). Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids. Environmental Toxicology and Chemistry 25, 182–189.
Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVSl&md5=208d485ac46d95291d5fe9dd8f22fa9dCAS | 16494240PubMed |

Spry, D., and Wood, C. (1984). Acid-base, plasma ion and blood gas changes in rainbow trout during short term toxic zinc exposure. Journal of Comparative Physiology. B. Biochemical, Systemic, and Environmental Physiology 154, 149–158.
Acid-base, plasma ion and blood gas changes in rainbow trout during short term toxic zinc exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXls1Gjtb0%3D&md5=336da2e885e3ebfb28056bf637c0f6afCAS |

USEPA (2002). ‘Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms [electronic resource].’ (United States Environmental Protection Agency, Office of Water: Washington, DC.)

Van Gestel, C. A. M., and Hensbergen, P. J. (1997). Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collembola: Isotomidae) in relation to bioavailability in soil. Environmental Toxicology and Chemistry 16, 1177–1186.
Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collembola: Isotomidae) in relation to bioavailability in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1entrY%3D&md5=02732f90ac2d8d6afdcc4185ecb175abCAS |

Verriopoulos, G., and Dimas, S. (1988). Combined toxicity of copper, cadmium, zinc, lead, nickel, and chrome to the copepod Tisbe holothuriae. Bulletin of Environmental Contamination and Toxicology 41, 378–384.
Combined toxicity of copper, cadmium, zinc, lead, nickel, and chrome to the copepod Tisbe holothuriae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVCit7s%3D&md5=92e188a4511f5ad888a3c84f3b2654c8CAS | 3219431PubMed |

Verriopoulos, G., and Hardouvelis, D. (1988). Effects of sublethal concentration of zinc on survival and fertility in four successive generations of Tisbe. Marine Pollution Bulletin 19, 162–166.
Effects of sublethal concentration of zinc on survival and fertility in four successive generations of Tisbe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktVWqu70%3D&md5=756814cb21857b2ccec7a9bdbce793cdCAS |

Vijayavel, K., Gopalakrishnan, S., Thiagarajan, R., and Thilagam, H. (2009). Immunotoxic effects of nickel in the mud crab Scylla serrata. Fish & Shellfish Immunology 26, 133–139.
Immunotoxic effects of nickel in the mud crab Scylla serrata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1eqsro%3D&md5=65c3cb4106084a6c26bf0aa448b571d9CAS |

Vitale, A. M., Monserrat, J. M., Castilho, P., and Rodriguez, E. M. (1999). Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comparative Biochemistry and Physiology. Part C. Pharmacology, Toxicology & Endocrinology 122, 121–129.
Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3gs1Sgtg%3D%3D&md5=3ec5a64f31e85b70c070117090fe9140CAS |

von der Ohe, P. C., and Liess, M. (2004). Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds. Environmental Toxicology and Chemistry 23, 150–156.
Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKlsQ%3D%3D&md5=80273b04e742ea2bb19eead002f9798cCAS | 14768879PubMed |

Wang, M., and Wang, G. (2010). Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel. Ecotoxicology 19, 273–284.
Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSmtrs%3D&md5=d7599bc8300f6143fe940fce71c8cc53CAS | 19821026PubMed |

Weis, J. S. (1980). Effect of zinc on regeneration in the fiddler crab Uca pugilator and its interactions with methylmercury and cadmium. Marine Environmental Research 3, 249–255.
Effect of zinc on regeneration in the fiddler crab Uca pugilator and its interactions with methylmercury and cadmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtlWqu7o%3D&md5=01a08d590b18f8a84e14af5245a3018fCAS |

Wuana, R. A., and Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011, 1–20.
Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation.Crossref | GoogleScholarGoogle Scholar |