Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Marine and estuarine phylogeography of the coasts of south-eastern Australia

D. J. Colgan
+ Author Affiliations
- Author Affiliations

Malacology, The Australian Museum, 1 William Street, Sydney, NSW 2010, Australia. Email: don.colgan@austmus.gov.au

Marine and Freshwater Research 67(11) 1597-1610 https://doi.org/10.1071/MF15106
Submitted: 11 March 2015  Accepted: 14 August 2015   Published: 4 November 2015

Abstract

Understanding a region’s phylogeography is essential for an evolutionary perspective on its biological conservation. This review examines the phylogeographic structures in south-eastern Australia that have been revealed by mitochondrial DNA sequencing and other genetic techniques and examines whether they can be explained by known factors. The review covers species that occur in the intertidal zone or, even infrequently, in the shallow subtidal zone. The coasts most frequently associated with phylogeographic structure are the boundaries between the Peronian and Maugean biogeographical provinces in southern New South Wales and the Maugean and Flindersian provinces in South Australia, the areas in Victoria and north-eastern Tasmania separated by the Bassian Isthmus at glacial maxima, long sandy stretches without rocky intertidal habitat on the Ninety Mile Beach in Victoria and the Younghusband Peninsula–Coorong in South Australia, southern Tasmania and Bass Strait, which acts as a barrier for littoral species.

Additional keywords: marine biogeography, Maugean Province, mismatch distribution, phylogeographic partitioning.


References

Astorga, M. P., Guiñez, R., and Castilla, J. C. (2009). Genetic divergence in the ascidian Pyura praeputialis (= Pyura stolonifera) (Heller, 1878) from mainland Australia and Tasmania. Papers and Proceeding of the Royal Society of Tasmania 143, 101–104.

Ayre, D. J., Read, J., and Wishart, J. (1991). Genetic subdivision within the eastern Australian population of the sea anemone Actinia tenebrosa. Marine Biology 109, 379–390.
Genetic subdivision within the eastern Australian population of the sea anemone Actinia tenebrosa.Crossref | GoogleScholarGoogle Scholar |

Ayre, D. J., Minchinton, T. E., and Perrin, C. (2009). Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Molecular Ecology 18, 1887–1903.
Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVekt7s%3D&md5=80674d153b8e5991fcf188ab7765947cCAS | 19434808PubMed |

Baird, M. E., Timko, P. G., Suthers, I. M., and Middleton, J. H. (2006). Coupled physical–biological modelling study of the East Australian Current with idealised wind forcing. Part I: biological model intercomparison. Journal of Marine Systems 59, 249–270.
Coupled physical–biological modelling study of the East Australian Current with idealised wind forcing. Part I: biological model intercomparison.Crossref | GoogleScholarGoogle Scholar |

Banks, S. C., Ling, S. D., Johnson, C. R., Piggott, M. P., Williamson, J. E., and Beheregaray, L. B. (2010). Genetic structure of a recent climate change‐driven range extension. Molecular Ecology 19, 2011–2024.
Genetic structure of a recent climate change‐driven range extension.Crossref | GoogleScholarGoogle Scholar | 20406383PubMed |

Barbosa, A. M., Thode, G., Real, R., Feliu, C., and Vargas, J. M. (2012). Phylogeographic triangulation: using predator–prey–parasite interactions to infer population history from partial genetic information. PLoS One 7, e50877.
Phylogeographic triangulation: using predator–prey–parasite interactions to infer population history from partial genetic information.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGjtrjF&md5=3aaf42220fb84b9fee1ffd7793daa51aCAS | 23209834PubMed |

Barrett, R. D. H., and Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution 23, 38–44.
Adaptation from standing genetic variation.Crossref | GoogleScholarGoogle Scholar |

Bennett, I., and Pope, E. C. (1953). Intertidal zonation of the exposed rocky shores of Victoria, together with a rearrangement of the biogeographical provinces of temperate Australian shores. Australian Journal of Marine and Freshwater Research 4, 105–159.
Intertidal zonation of the exposed rocky shores of Victoria, together with a rearrangement of the biogeographical provinces of temperate Australian shores.Crossref | GoogleScholarGoogle Scholar |

Bennett, I., and Pope, E. C. (1960). Intertidal zonation of the exposed rocky shores of Tasmania and its relationship with the rest of Australia. Australian Journal of Marine and Freshwater Research 11, 182–221.
Intertidal zonation of the exposed rocky shores of Tasmania and its relationship with the rest of Australia.Crossref | GoogleScholarGoogle Scholar |

Billingham, M., and Ayre, D. J. (1996). Genetic subdivision in the subtidal, clonal sea anemone Anthothoe albocincta. Marine Biology 125, 153–163.
Genetic subdivision in the subtidal, clonal sea anemone Anthothoe albocincta.Crossref | GoogleScholarGoogle Scholar |

Booth, D. J., Bond, N., and Macreadie, P. (2011). Detecting range shifts among Australian fishes in response to climate change. Marine and Freshwater Research 62, 1027–1042.
Detecting range shifts among Australian fishes in response to climate change.Crossref | GoogleScholarGoogle Scholar |

Bostock, H. C., Opdyke, B. N., Gagan, M. K., Kiss, A. E., and Fifield, L. K. (2006). Glacial/interglacial changes in the East Australian current. Climate Dynamics 26, 645–659.
Glacial/interglacial changes in the East Australian current.Crossref | GoogleScholarGoogle Scholar |

Broquet, T., Viard, F., and Yearsley, J. M. (2013). Genetic drift and collective dispersal can result in chaotic genetic patchiness. Evolution 67, 1660–1675.
Genetic drift and collective dispersal can result in chaotic genetic patchiness.Crossref | GoogleScholarGoogle Scholar | 23730760PubMed |

Brown, L. D. (1991). Genetic variation and population structure in the blacklip abalone, Haliotis rubra. Australian Journal of Marine and Freshwater Research 42, 77–90.
Genetic variation and population structure in the blacklip abalone, Haliotis rubra.Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2014). Trend in SST for the Australian Region (°C/10 yr) Annual 1970–2013. Available at http://www.bom.gov.au/climate/change/index.shtml#tabs=Trackerandtracker=trend–mapsandtQ%5Bmap%5D=sstandtQ%5Barea%5D=ausandtQ%5Bseason%5D=0112andtQ%5Bperiod%5D=1970 [Verified 16 February 2015].

Burridge, C. P., and Versace, V. L. (2007). Population genetic structuring in Acanthopagrus butcheri (Pisces: Sparidae): does low gene flow among estuaries apply to both sexes? Marine Biotechnology 9, 33–44.
Population genetic structuring in Acanthopagrus butcheri (Pisces: Sparidae): does low gene flow among estuaries apply to both sexes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlCrsLg%3D&md5=bccdb10ee25a27aab4b011fb4f181bc1CAS | 16937020PubMed |

Burridge, C. P., Hurt, A. C., Farrington, L. W., Coutin, P. C., and Austin, C. M. (2004). Stepping stone gene flow in an estuarine‐dwelling sparid from south‐east Australia. Journal of Fish Biology 64, 805–819.
Stepping stone gene flow in an estuarine‐dwelling sparid from south‐east Australia.Crossref | GoogleScholarGoogle Scholar |

Chung, P. P., Hyne, R. V., Mann, R. M., and Ballard, J. W. O. (2008). Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia. Science of the Total Environment 403, 222–229.
Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlemsL0%3D&md5=e0e878b3db997e0ab8dda70adbe6d8e0CAS | 18586304PubMed |

Coleman, M. A., Gillanders, B. M., and Connell, S. D. (2009). Dispersal and gene flow in the habitat-forming kelp, Ecklonia radiata: relative degrees of isolation across an east-west coastline. Marine and Freshwater Research 60, 802–809.
Dispersal and gene flow in the habitat-forming kelp, Ecklonia radiata: relative degrees of isolation across an east-west coastline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGju7jK&md5=4b7523d133c1011ef3295adc70831553CAS |

Colgan, D. J. (1981). Spatial and temporal variation in the genotypic frequencies of the mussel Brachidontes rostratus. Heredity 46, 197–208.
Spatial and temporal variation in the genotypic frequencies of the mussel Brachidontes rostratus.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., and Da Costa, P. (2009). DNA haplotypes cross species and biogeographic boundaries in estuarine hydrobiid snails of the genus Tatea. Marine and Freshwater Research 60, 861–872.
DNA haplotypes cross species and biogeographic boundaries in estuarine hydrobiid snails of the genus Tatea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGju7jE&md5=9d039c24c7277db4975d7d000aa99edeCAS |

Colgan, D. J., and Da Costa, P. (2013a). Possible drivers of biodiversity generation in the Siphonaria of south-eastern Australia. Marine Biodiversity 43, 73–85.
Possible drivers of biodiversity generation in the Siphonaria of south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., and Da Costa, P. (2013b). Invasive and non-invasive lineages in Xenostrobus (Bivalvia: Mytilidae). Molluscan Research 33, 272–280.
Invasive and non-invasive lineages in Xenostrobus (Bivalvia: Mytilidae).Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., and Da Costa, P. (2013c). Recent evolutionary dynamism in three pulmonate gastropods from south-eastern Australia. Estuarine, Coastal and Shelf Science 128, 1–8.
Recent evolutionary dynamism in three pulmonate gastropods from south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., and Middelfart, P. M. (2011). Mytilus mitochondrial DNA haplotypes in south-eastern Australia. Aquatic Biology 12, 47–53.
Mytilus mitochondrial DNA haplotypes in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., and Paxton, J. R. (1997). Biochemical systematics and recognition of a western stock of the common gemfish, Rexea solandri (Scombroidea: Gempylidae) in Australia. Marine and Freshwater Research 48, 103–118.
Biochemical systematics and recognition of a western stock of the common gemfish, Rexea solandri (Scombroidea: Gempylidae) in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFemtbg%3D&md5=7d4931c055e040b3f172cc334c2d318aCAS |

Colgan, D. J., and Ponder, W. F. (2002). Genetic discrimination of morphologically similar, sympatric species of pearl oysters (Mollusca: Bivalvia: Pinctada) in eastern Australia. Marine and Freshwater Research 53, 697–709.
Genetic discrimination of morphologically similar, sympatric species of pearl oysters (Mollusca: Bivalvia: Pinctada) in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., and Schreiter, S. (2011). Extrinsic and intrinsic influences on the phylogeography of the Austrocochlea constricta species group. Journal of Experimental Marine Biology and Ecology 397, 44–51.
Extrinsic and intrinsic influences on the phylogeography of the Austrocochlea constricta species group.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., Middelfart, P., Golding, R., and Criscione, F. (2009) ‘Monitoring the Response of NSW Bivalves to Climate Change. Final Report to the Environmental Trust for Grant 2008/RD/0071.’ (Australian Museum: Sydney.)

Condie, S. (2005). Web site on marine connectivity around Australia. Eos, Transactions, American Geophysical Union 86, 246.
Web site on marine connectivity around Australia.Crossref | GoogleScholarGoogle Scholar |

Conod, N., Bartlett, J. P., Elliott, N. G., and Evans, B. S. (2002). Comparison of mitochondrial and nuclear DNA analyses of population structure in the blacklip abalone Haliotis rubra Leach. Marine and Freshwater Research 53, 711–718.
Comparison of mitochondrial and nuclear DNA analyses of population structure in the blacklip abalone Haliotis rubra Leach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmtlylu7o%3D&md5=34e35e27df9e8046621987daeb5d9f4bCAS |

Cotton, B. C. (1959). ‘South Australian Mollusca: Archaeogastropoda.’ (W. L. Hawes, Government Printer: Adelaide.)

Crawford, C. (2003). Qualitative risk assessment of the effects of shellfish farming on the environment in Tasmania, Australia. Ocean and Coastal Management 46, 47–58.
Qualitative risk assessment of the effects of shellfish farming on the environment in Tasmania, Australia.Crossref | GoogleScholarGoogle Scholar |

Cresswell, G. (2000). Currents of the continental shelf and upper slope of Tasmania. Papers and Proceeding of the Royal Society of Tasmania 133, 21–30.

Dartnall, A. J. (1974). Littoral biogeography. In ‘Biogeography and Ecology in Tasmania’. (Ed. W. D. Williams.) pp. 171–194. (Dr W. Junk: The Hague.)

Dawson, M. N. (2001). Phylogeography in coastal marine animals: a solution from California? Journal of Biogeography 28, 723–736.
Phylogeography in coastal marine animals: a solution from California?Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N. (2005). Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia. Journal of Biogeography 32, 515–533.
Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia.Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N. (2012). Parallel phylogeographic structure in ecologically similar sympatric sister taxa. Molecular Ecology 21, 987–1004.
Parallel phylogeographic structure in ecologically similar sympatric sister taxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVamt7c%3D&md5=fad1dfb74dcba54e0d8fde2ee49c7803CAS | 22229665PubMed |

Day, R., Dowell, A., Sant, G., Klemke, J., and Shaw, C. (1995). Patchy predation: foraging behaviour of Coscinasterias calamaria and escape responses of Haliotis rubra. Marine and Freshwater Behaviour and Physiology 26, 11–33.
Patchy predation: foraging behaviour of Coscinasterias calamaria and escape responses of Haliotis rubra.Crossref | GoogleScholarGoogle Scholar |

Dias, P. J., Fotedar, S., and Snow, M. (2014). Characterisation of mussel (Mytilus sp.) populations in Western Australia and evaluation of potential genetic impacts of mussel spat translocation from interstate. Marine and Freshwater Research 65, 486–496.
Characterisation of mussel (Mytilus sp.) populations in Western Australia and evaluation of potential genetic impacts of mussel spat translocation from interstate.Crossref | GoogleScholarGoogle Scholar |

DiBattista, J. D., Randall, J. E., Newman, S. J., and Bowen, B. W. (2014). Round herring (genus Etrumeus) contain distinct evolutionary lineages coincident with a biogeographic barrier along Australia’s southern temperate coastline. Marine Biology 161, 2465–2477.
Round herring (genus Etrumeus) contain distinct evolutionary lineages coincident with a biogeographic barrier along Australia’s southern temperate coastline.Crossref | GoogleScholarGoogle Scholar |

Dong, Y.-W., Wang, H.-S., Han, G.-D., Ke, C.-H., Zhan, X., Nakano, T., and Williams, G. A. (2012). The impact of Yangtze River discharge, ocean currents and historical events on the biogeographic pattern of Cellana toreuma along the China coast. PLoS ONE 7, e36178.
The impact of Yangtze River discharge, ocean currents and historical events on the biogeographic pattern of Cellana toreuma along the China coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFWltb0%3D&md5=d475abbf3092ccd8b252a5eaac60062eCAS | 22563446PubMed |

Eberl, R., Mateos, M., Grosberg, R. K., Santamaria, C. A., and Hurtado, L. A. (2013). Phylogeography of the supralittoral isopod Ligia occidentalis around the Point Conception marine biogeographical boundary. Journal of Biogeography 40, 2361–2372.
Phylogeography of the supralittoral isopod Ligia occidentalis around the Point Conception marine biogeographical boundary.Crossref | GoogleScholarGoogle Scholar |

Edgar, G. J. (1984). General features of the ecology and biogeography of Tasmanian subtidal rocky shore communities. Papers and Proceedings of the Royal Society of Tasmania 118, 173–186.

Egan, E. A., and Anderson, D. T. (1989). Larval development of the chthamaloid barnacles Catomerus polymerus Darwin, Chamaesipho tasmanica Foster & Anderson and Chthamalus antennatus Darwin (Crustacea: Cirripedia). Zoological Journal of the Linnean Society 95, 1–28.
Larval development of the chthamaloid barnacles Catomerus polymerus Darwin, Chamaesipho tasmanica Foster & Anderson and Chthamalus antennatus Darwin (Crustacea: Cirripedia).Crossref | GoogleScholarGoogle Scholar |

Elliott, N. G., Lowry, P. S., Grewe, P. M., Innes, B. H., Yearsley, G. K., and Ward, R. D. (1998). Genetic evidence for depth‐ and spatially separated stocks of the deep‐water spikey oreo in Australasian waters. Journal of Fish Biology 52, 796–816.
Genetic evidence for depth‐ and spatially separated stocks of the deep‐water spikey oreo in Australasian waters.Crossref | GoogleScholarGoogle Scholar |

Fraser, C. I., Spencer, H. G., and Waters, J. M. (2009). Glacial oceanographic contrasts explain phylogeography of Australian bull kelp. Molecular Ecology 18, 2287–2296.
Glacial oceanographic contrasts explain phylogeography of Australian bull kelp.Crossref | GoogleScholarGoogle Scholar | 19389161PubMed |

Gallagher, S. J., Greenwood, D. R., Taylor, D., Smith, A. J., Wallace, M. W., and Holdgate, G. R. (2003). The Pliocene climatic and environmental evolution of southeastern Australia: evidence from the marine and terrestrial realm. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 349–382.
The Pliocene climatic and environmental evolution of southeastern Australia: evidence from the marine and terrestrial realm.Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., and Ward, R. D. (1998). Population structure of the Australian gummy shark (Mustelus antarcticus Günther) inferred from allozymes, mitochondrial DNA and vertebrae counts. Marine and Freshwater Research 49, 733–745.
Population structure of the Australian gummy shark (Mustelus antarcticus Günther) inferred from allozymes, mitochondrial DNA and vertebrae counts.Crossref | GoogleScholarGoogle Scholar |

Glennon, V., Perkins, E. M., Chisholm, L. A., and Whittington, I. D. (2008). Comparative phylogeography reveals host generalists, specialists and cryptic diversity: hexabothriid, microbothriid and monocotylid monogeneans from rhinobatid rays in southern Australia. International Journal for Parasitology 38, 1599–1612.
Comparative phylogeography reveals host generalists, specialists and cryptic diversity: hexabothriid, microbothriid and monocotylid monogeneans from rhinobatid rays in southern Australia.Crossref | GoogleScholarGoogle Scholar | 18621052PubMed |

Golding, R. E., Colgan, D. J., Nelmes, G., and Reutelshöfer, T. (2011). Sympatry and allopatry in the deeply divergent mitochondrial DNA clades of the estuarine pulmonate gastropod genus Phallomedusa (Mollusca, Gastropoda). Marine Biology 158, 1259–1269.
Sympatry and allopatry in the deeply divergent mitochondrial DNA clades of the estuarine pulmonate gastropod genus Phallomedusa (Mollusca, Gastropoda).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWltLo%3D&md5=6bf3a0762a4965178588e362c44c3eb8CAS |

Goldstien, S. J., Schiel, D. R., and Gemmell, N. J. (2006). Comparative phylogeography of coastal limpets across a marine disjunction in New Zealand. Molecular Ecology 15, 3259–3268.
Comparative phylogeography of coastal limpets across a marine disjunction in New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Shu7zJ&md5=bc65fd979282364192bd968efa40119cCAS | 16968269PubMed |

Gunasekera, R. M., Patil, J. G., McEnnulty, F. R., and Bax, N. J. (2005). Specific amplification of mt-COI gene of the invasive gastropod Maoricolpus roseus in planktonic samples reveals a free-living larval life-history stage. Marine and Freshwater Research 56, 901–912.
Specific amplification of mt-COI gene of the invasive gastropod Maoricolpus roseus in planktonic samples reveals a free-living larval life-history stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKns77J&md5=8ce68291f6b3623b90efead61cc4086dCAS |

Harpending, H. C., Batzer, M. A., Gurven, M., Jorde, L. B., Rogers, A. R., and Sherry, S. T. (1998). Genetic traces of ancient demography. Proceedings of the National Academy of Sciences of the United States of America 95, 1961–1967.
Genetic traces of ancient demography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1ajsLk%3D&md5=9b1a197366247919a7d940b837885385CAS | 9465125PubMed |

Hedley, C. (1904). The effect of the Bassian Isthmus upon the existing marine fauna: a study in ancient geography. Proceedings of the Linnean Society of New South Wales 28, 876–883.

Higgins, K. L., Semmens, J. M., Doubleday, Z. A., and Burridge, C. P. (2013). Comparison of population structuring in sympatric octopus species with and without a pelagic larval stage. Marine Ecology Progress Series 486, 203–212.
Comparison of population structuring in sympatric octopus species with and without a pelagic larval stage.Crossref | GoogleScholarGoogle Scholar |

Hill, P. J., De Deckker, P., Von der Borch, C., and Murray–Wallace, C. V. (2009). Ancestral Murray River on the Lacepede Shelf, southern Australia: Late Quaternary migrations of a major river outlet and strandline development. Australian Journal of Earth Sciences 56, 135–157.
Ancestral Murray River on the Lacepede Shelf, southern Australia: Late Quaternary migrations of a major river outlet and strandline development.Crossref | GoogleScholarGoogle Scholar |

Huang, B. X., Peakall, R., and Hanna, P. J. (2000). Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers. Marine Biology 136, 207–216.
Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFOltLg%3D&md5=c1ffd94e2d6e4ffbd5cd506141ca40fdCAS |

Hunt, A., and Ayre, D. J. (1989). Population structure in the sexually reproducing sea anemone Oulactis muscosa. Marine Biology 102, 537–544.
Population structure in the sexually reproducing sea anemone Oulactis muscosa.Crossref | GoogleScholarGoogle Scholar |

Johnson, M. S., and Black, R. (2006). Effects of mode of reproduction on genetic divergence over large spatial and temporal scales in intertidal snails of the genus Bembicium Philippi (Gastropoda: Littorinidae). Biological Journal of the Linnean Society. Linnean Society of London 89, 689–704.
Effects of mode of reproduction on genetic divergence over large spatial and temporal scales in intertidal snails of the genus Bembicium Philippi (Gastropoda: Littorinidae).Crossref | GoogleScholarGoogle Scholar |

Johnson, C. R., Banks, S. C., Barrett, N. S., Cazassus, F., Dunstan, P. K., Edgar, G. J., Frusher, S. D., Gardner, C., Haddon, M., Helidoniotis, F., Hill, K. L., Holbrook, N. J., Hosie, G. W., Last, P. R., Ling, S. D., Melbourne-Thomas, J., Miller, K., Pecl, G. T., Richardson, A. J., Ridgway, K. R., Rintoul, S. R., Ritz, D. A., Ross, D. J., Sanderson, J. C., Shepherd, S. A., Slotwinski, A., Swadling, K. W., and Taw, N. (2011). Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. Journal of Experimental Marine Biology and Ecology 400, 17–32.
Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Jones, B. W., Lopez, J. E., Huttenburg, J., and Nishiguchi, M. K. (2006). Population structure between environmentally transmitted vibrios and bobtail squids using nested clade analysis. Molecular Ecology 15, 4317–4329.
Population structure between environmentally transmitted vibrios and bobtail squids using nested clade analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28nntFGlsg%3D%3D&md5=eeed9f300eea766c9f1690b85f04760dCAS | 17107468PubMed |

Kassahn, K. S., Donnellan, S. C., Fowler, A. J., Hall, K. C., Adams, M., and Shaw, P. W. (2003). Molecular and morphological analyses of the cuttlefish Sepia apama indicate a complex population structure. Marine Biology 143, 947–962.
Molecular and morphological analyses of the cuttlefish Sepia apama indicate a complex population structure.Crossref | GoogleScholarGoogle Scholar |

Lambeck, K., and Chappell, J. (2001). Sea level change through the last glacial cycle. Science 292, 679–686.
Sea level change through the last glacial cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1els74%3D&md5=04d88f84e7b1955d363f66eaca072108CAS | 11326090PubMed |

Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., and Pecl, G. (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography 20, 58–72.
Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices.Crossref | GoogleScholarGoogle Scholar |

Li, J.-C., O’Foighil, D., and Park, J.-K. (2013). Triton’s trident: cryptic Neogene divergences in a marine clam (Lasaea australis) correspond to Australia’s three temperate biogeographic provinces. Molecular Ecology 22, 1933–1946.
Triton’s trident: cryptic Neogene divergences in a marine clam (Lasaea australis) correspond to Australia’s three temperate biogeographic provinces.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D. (2013). Pushing boundaries of range and resilience: a review of range-extension by a barrens-forming sea urchin. In ‘Climate Change Perspectives from the Atlantic: Past, Present and Future’. (Eds J. M. Fernandex-Palacios, L. de Nascimento, J. C. Hernandez, S. Clemente, A. Gonzalez and J. P. Diaz–Gonzalez.) pp. 411–442. (Universidad de la Laguna: La Laguna, Spain.)

Lisiecki, L. E., and Raymo, M. E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.

Mackie, J. A. (2003). A molecular analysis of bryozoan dispersal. Ph.D. Thesis, The University of Melbourne.

Marshall, B. A. (1983). A revision of the recent Triphoridae of Southern Australia (Mollusca: Gastropoda). Records of the Australian Museum 2, 1–119.
A revision of the recent Triphoridae of Southern Australia (Mollusca: Gastropoda).Crossref | GoogleScholarGoogle Scholar |

Middleton, J. F., and Bye, J. A. T. (2007). A review of the shelf–slope circulation along Australia’s southern shelves: Cape Leeuwin to Portland. Progress in Oceanography 75, 1–41.
A review of the shelf–slope circulation along Australia’s southern shelves: Cape Leeuwin to Portland.Crossref | GoogleScholarGoogle Scholar |

Miller, A. D., Versace, V. L., Matthews, T. G., Montgomery, S., and Bowie, K. C. (2013). Ocean currents influence the genetic structure of an intertidal mollusc in southeastern Australia: implications for predicting the movement of passive dispersers across a marine biogeographic barrier. Ecology and Evolution 3, 1248–1261.
Ocean currents influence the genetic structure of an intertidal mollusc in southeastern Australia: implications for predicting the movement of passive dispersers across a marine biogeographic barrier.Crossref | GoogleScholarGoogle Scholar | 23762511PubMed |

Miller, K. J., Mundy, C. N., and Mayfield, S. (2014). Molecular genetics to inform spatial management in benthic invertebrate fisheries: a case study using the Australian greenlip abalone. Molecular Ecology 23, 4958–4975.
Molecular genetics to inform spatial management in benthic invertebrate fisheries: a case study using the Australian greenlip abalone.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M7gt1amtg%3D%3D&md5=a3bd0d96afa6d43154173e19d850b706CAS | 25211183PubMed |

Milton, D. A., and Shaklee, J. B. (1987). Biochemical genetics and population structure of blue grenadier, Macruronus novaezelandiae (Hector) (Pisces: Merluccidae), from Australian waters. Marine and Freshwater Research 38, 727–742.
Biochemical genetics and population structure of blue grenadier, Macruronus novaezelandiae (Hector) (Pisces: Merluccidae), from Australian waters.Crossref | GoogleScholarGoogle Scholar |

Moore, G. I., and Chaplin, J. A. (2014). Contrasting demographic histories in a pair of allopatric, sibling species of fish (Arripidae) from environments with contrasting glacial histories. Marine Biology 161, 1543–1555.
Contrasting demographic histories in a pair of allopatric, sibling species of fish (Arripidae) from environments with contrasting glacial histories.Crossref | GoogleScholarGoogle Scholar |

Murray-Jones, S. E., and Ayre, D. J. (1997). High levels of gene flow in the surf bivalve Donax deltoides (Bivalvia: Donacidae) on the east coast of Australia. Marine Biology 128, 83–89.
High levels of gene flow in the surf bivalve Donax deltoides (Bivalvia: Donacidae) on the east coast of Australia.Crossref | GoogleScholarGoogle Scholar |

Murray–Wallace, C. V., Beu, A. G., Kendrick, G. W., Brown, L. J., Belperio, A. P., and Sherwood, J. E. (2000). Palaeoclimatic implications of the occurrence of the arcoid bivalve Anadara trapezia (Deshayes) in the Quaternary of Australasia. Quaternary Science Reviews 19, 559–590.
Palaeoclimatic implications of the occurrence of the arcoid bivalve Anadara trapezia (Deshayes) in the Quaternary of Australasia.Crossref | GoogleScholarGoogle Scholar |

Naughton, K. M., O’Hara, T. D., Appleton, B., and Gardner, M. G. (2014). Sympatric cryptic species in the crinoid genus Cenolia (Echinodermata: Crinoidea: Comasteridae) delineated by sequence and microsatellite markers. Molecular Phylogenetics and Evolution 78, 160–171.
Sympatric cryptic species in the crinoid genus Cenolia (Echinodermata: Crinoidea: Comasteridae) delineated by sequence and microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cjmtVCrug%3D%3D&md5=4efe57b0f54e7982363228386cc50109CAS | 24862222PubMed |

O’Hara, T. D., and Poore, G. C. B. (2000). Patterns of distribution for southern Australian marine echinoderms and decapods. Journal of Biogeography 27, 1321–1335.
Patterns of distribution for southern Australian marine echinoderms and decapods.Crossref | GoogleScholarGoogle Scholar |

Ovenden, J. R., Brasher, D. J., and White, R. W. G. (1992). Mitochondrial DNA analyses of the red rock lobster Jasus edwardsii supports an apparent absence of population subdivision throughout Australasia. Marine Biology 112, 319–326.
Mitochondrial DNA analyses of the red rock lobster Jasus edwardsii supports an apparent absence of population subdivision throughout Australasia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsVyltrY%3D&md5=4658c4be1e55543644d7a06a41643e7dCAS |

Parsons, K. E., and Ward, R. D. (1994). Electrophoretic and morphological examination of Austrocochlea constricta (Gastropoda: Trochidae): a species complex. Australian Journal of Marine and Freshwater Research 45, 1065–1085.
Electrophoretic and morphological examination of Austrocochlea constricta (Gastropoda: Trochidae): a species complex.Crossref | GoogleScholarGoogle Scholar |

Patarnello, T., Volckaert, F. A., and Castilho, R. (2007). Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? Molecular Ecology 16, 4426–4444.
Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break?Crossref | GoogleScholarGoogle Scholar | 17908222PubMed |

Phillips, J. A. (2001). Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora? Biodiversity and Conservation 10, 1555–1577.
Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora?Crossref | GoogleScholarGoogle Scholar |

Piggott, M. P., Banks, S. C., Tung, P., and Beheregaray, L. B. (2008). Genetic evidence for different scales of connectivity in a marine mollusc. Marine Ecology Progress Series 365, 127–136.
Genetic evidence for different scales of connectivity in a marine mollusc.Crossref | GoogleScholarGoogle Scholar |

Poloczanska, E. S., Smith, S., Fauconnet, L., Healy, J., Tibbetts, I. R., Burrows, M. T., and Richardson, A. J. (2011). Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50 years of rapid warming. Journal of Experimental Marine Biology and Ecology 400, 145–154.
Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50 years of rapid warming.Crossref | GoogleScholarGoogle Scholar |

Ponder, W. F., Colgan, D. J., and Clark, G. A. (1991). The morphology, taxonomy and genetic structure of Tatea, estuarine snails from temperate Australia (Mollusca: Gastropoda: Hydrobiidae). Australian Journal of Zoology 39, 447–497.
The morphology, taxonomy and genetic structure of Tatea, estuarine snails from temperate Australia (Mollusca: Gastropoda: Hydrobiidae).Crossref | GoogleScholarGoogle Scholar |

Przeslawski, R., Falkner, I., Ashcroft, M. B., and Hutchings, P. (2012). Using rigorous selection criteria to investigate marine range shifts. Estuarine, Coastal and Shelf Science 113, 205–212.
Using rigorous selection criteria to investigate marine range shifts.Crossref | GoogleScholarGoogle Scholar |

Ridgway, K. R. (2007). Seasonal circulation around Tasmania: an interface between eastern and western boundary dynamics. Journal of Geophysical Research 112, C10016.
Seasonal circulation around Tasmania: an interface between eastern and western boundary dynamics.Crossref | GoogleScholarGoogle Scholar |

Ridgway, K. R., and Condie, S. A. (2004). The 5500-km-long boundary flow off western and southern Australia. Journal of Geophysical Research 109, C04017.
The 5500-km-long boundary flow off western and southern Australia.Crossref | GoogleScholarGoogle Scholar |

Rius, M., and Teske, P. R. (2013). Cryptic diversity in coastal Australasia: a morphological and mitonuclear genetic analysis of habitat-forming sibling species. Zoological Journal of the Linnean Society 168, 597–611.
Cryptic diversity in coastal Australasia: a morphological and mitonuclear genetic analysis of habitat-forming sibling species.Crossref | GoogleScholarGoogle Scholar |

Roberts, D. G., and Ayre, D. J. (2010). Panmictic population structure in the migratory marine sparid Acanthopagrus australis despite its close association with estuaries. Marine Ecology Progress Series 412, 223–230.
Panmictic population structure in the migratory marine sparid Acanthopagrus australis despite its close association with estuaries.Crossref | GoogleScholarGoogle Scholar |

Roberts, D. G., Gray, C. A., West, R. J., and Ayre, D. J. (2010). Marine genetic swamping: hybrids replace an obligately estuarine fish. Molecular Ecology 19, 508–520.
Marine genetic swamping: hybrids replace an obligately estuarine fish.Crossref | GoogleScholarGoogle Scholar | 20070520PubMed |

Robinson, N., Skinner, A., Sethuraman, L., McPartlan, H., Murray, N., Knuckey, I., Smith, D. C., Hindell, J., and Talman, S. (2008). Genetic stock structure of blue-eye trevalla (Hyperoglyphe antarctica) and warehous (Seriolella brama and Seriolella punctata) in south-eastern Australian waters. Marine and Freshwater Research 59, 502–514.
Genetic stock structure of blue-eye trevalla (Hyperoglyphe antarctica) and warehous (Seriolella brama and Seriolella punctata) in south-eastern Australian waters.Crossref | GoogleScholarGoogle Scholar |

Rocha, L. A., Craig, M. T., and Bowen, B. W. (2007). Phylogeography and the conservation of coral reef fishes. Coral Reefs 26, 501–512.
Phylogeography and the conservation of coral reef fishes.Crossref | GoogleScholarGoogle Scholar |

Ross, D. J., Johnson, C. R., Hewitt, C. L., and Ruiz, G. M. (2004). Interaction and impacts of two introduced species on a soft-sediment marine assemblage in SE Tasmania. Marine Biology 144, 747–756.
Interaction and impacts of two introduced species on a soft-sediment marine assemblage in SE Tasmania.Crossref | GoogleScholarGoogle Scholar |

Sá-Pinto, A., Branco, M. S., Alexandrino, P. B., Fontaine, M. C., and Baird, S. J. E. (2012). Barriers to gene flow in the marine environment: insights from two common intertidal limpet species of the Atlantic and Mediterranean. PLoS ONE 7, e50330.
Barriers to gene flow in the marine environment: insights from two common intertidal limpet species of the Atlantic and Mediterranean.Crossref | GoogleScholarGoogle Scholar | 23239977PubMed |

Selkoe, K. A., Gaines, S. D., Caselle, J. E., and Warner, R. R. (2006). Shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87, 3082–3094.
Shifts and kin aggregation explain genetic patchiness in fish recruits.Crossref | GoogleScholarGoogle Scholar | 17249233PubMed |

Shaddick, K., Gilligan, D. M., Burridge, C. P., Jerry, D. R., Truong, K., and Beheregaray, L. B. (2011). Historic divergence with contemporary connectivity in a catadromous fish, the estuary perch (Macquaria colonorum). Canadian Journal of Fisheries and Aquatic Sciences 68, 304–318.
Historic divergence with contemporary connectivity in a catadromous fish, the estuary perch (Macquaria colonorum).Crossref | GoogleScholarGoogle Scholar |

Shanks, A. L., and Eckert, G. L. (2005). Population persistence of California Current fishes and benthic crustaceans: a marine drift paradox. Ecological Monographs 75, 505–524.
Population persistence of California Current fishes and benthic crustaceans: a marine drift paradox.Crossref | GoogleScholarGoogle Scholar |

Sherman, C. D. H., Hunt, A., and Ayre, D. J. (2008). Is life history a barrier to dispersal? Contrasting patterns of genetic differentiation along an oceanographically complex coast. Biological Journal of the Linnean Society. Linnean Society of London 95, 106–116.
Is life history a barrier to dispersal? Contrasting patterns of genetic differentiation along an oceanographically complex coast.Crossref | GoogleScholarGoogle Scholar |

Sikes, E. L., Howard, W. R., Samson, C. R., Mahan, T. S., Robertson, L. G., and Volkman, J. K. (2009). Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary. Paleoceanography 24, PA2201.
Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary.Crossref | GoogleScholarGoogle Scholar |

Soh, S. W. L., Maguire, G. B., and Ward, R. D. (1998). Genetic studies of the venerid clam genus Katelysia. Journal of Shellfish Research 17, 1057–1064.

Teske, P. R., von der Heyden, S., McQuaid, C. D., and Barker, N. P. (2011). A review of marine phylogeography in southern Africa. South African Journal of Science 107, 43–53.
A review of marine phylogeography in southern Africa.Crossref | GoogleScholarGoogle Scholar |

Teske, P. R., Sandoval–Castillo, J., van Sebille, E., Waters, J., and Beheregaray, L. B. (2015). On-shelf larval retention limits population connectivity in a coastal broadcast spawner. Marine Ecology Progress Series 532, 1–12.
On-shelf larval retention limits population connectivity in a coastal broadcast spawner.Crossref | GoogleScholarGoogle Scholar |

Tilburg, C. E., Hurlburt, H. E., O’Brien, J. J., and Shriver, J. F. (2001). The dynamics of the East Australian Current system: the Tasman Front, the East Auckland Current and the East Cape Current. Journal of Physical Oceanography 31, 2917–2943.
The dynamics of the East Australian Current system: the Tasman Front, the East Auckland Current and the East Cape Current.Crossref | GoogleScholarGoogle Scholar |

van den Enden, T., White, R. W., and Elliott, N. G. (2000). Genetic variation in the greenback flounder Rhombosolea tapirina Günther (Teleostei, Pleuronectidae) and the implications for aquaculture. Marine and Freshwater Research 51, 23–33.
Genetic variation in the greenback flounder Rhombosolea tapirina Günther (Teleostei, Pleuronectidae) and the implications for aquaculture.Crossref | GoogleScholarGoogle Scholar |

Veale, A. J., and Lavery, S. D. (2011). Phylogeography of the snakeskin chiton Sypharochiton pelliserpentis (Mollusca: Polyplacophora) around New Zealand: are seasonal near-shore upwelling events a dynamic barrier to gene flow? Biological Journal of the Linnean Society. Linnean Society of London 104, 552–563.
Phylogeography of the snakeskin chiton Sypharochiton pelliserpentis (Mollusca: Polyplacophora) around New Zealand: are seasonal near-shore upwelling events a dynamic barrier to gene flow?Crossref | GoogleScholarGoogle Scholar |

von der Heyden, S., Bowie, R. C. K., Prochazka, K., Bloomer, P., Crane, N. L., and Bernardi, G. (2011). Phylogeographic patterns and cryptic speciation across oceanographic barriers in South African intertidal fishes. Journal of Evolutionary Biology 24, 2505–2519.
Phylogeographic patterns and cryptic speciation across oceanographic barriers in South African intertidal fishes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbptlSlsg%3D%3D&md5=377a90d24024688c292daa41d568f56cCAS | 21910777PubMed |

Ward, R. D., and Elliott, N. G. (2001). Genetic population structure of species in the South East Fishery of Australia. Marine and Freshwater Research 52, 563–573.
Genetic population structure of species in the South East Fishery of Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVaqtLc%3D&md5=b8b571b8bd9858517721797a02c53d78CAS |

Waters, J. M. (2008). Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Diversity & Distributions 14, 692–700.
Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both?Crossref | GoogleScholarGoogle Scholar |

Waters, J. M. (2011). Competitive exclusion: phylogeography’s ‘elephant in the room’? Molecular Ecology 20, 4388–4394.
Competitive exclusion: phylogeography’s ‘elephant in the room’?Crossref | GoogleScholarGoogle Scholar | 21951722PubMed |

Waters, J. M., and Roy, M. S. (2003). Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star. Journal of Biogeography 30, 1787–1796.
Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star.Crossref | GoogleScholarGoogle Scholar |

Waters, J. M., and Roy, M. S. (2004). Out of Africa: the slow train to Australasia. Systematic Biology 53, 18–24.
Out of Africa: the slow train to Australasia.Crossref | GoogleScholarGoogle Scholar | 14965897PubMed |

Waters, J. M., O’Loughlin, P. M., and Roy, M. S. (2004). Cladogenesis in a starfish species complex from southern Australia: evidence for vicariant speciation? Molecular Phylogenetics and Evolution 32, 236–245.
Cladogenesis in a starfish species complex from southern Australia: evidence for vicariant speciation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1ektLg%3D&md5=f4a6fb7e1d8ea06fd0403e7d1651824dCAS | 15186810PubMed |

Waters, J. M., King, T. M., O’Loughlin, P. M., and Spencer, H. G. (2005). Phylogeographical disjunction in abundant high-dispersal littoral gastropods. Molecular Ecology 14, 2789–2802.
Phylogeographical disjunction in abundant high-dispersal littoral gastropods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1Cju7w%3D&md5=93aa6ea89eeb27512b3b4cf1faefaa04CAS | 16029478PubMed |

Waters, J. M., McCulloch, G. A., and Eason, J. A. (2007). Marine biogeographical structure in two highly dispersive gastropods: implications for trans-Tasman dispersal. Journal of Biogeography 34, 678–687.
Marine biogeographical structure in two highly dispersive gastropods: implications for trans-Tasman dispersal.Crossref | GoogleScholarGoogle Scholar |

Waters, J. M., Wernberg, T., Connell, S. D., Thomsen, M. S., Zuccarello, G. C., Kraft, G. T., Sanderson, J. C., West, J. A., and Gurgel, C. F. D. (2010). Australia’s marine biogeography revisited: back to the future? Austral Ecology 35, 988–992.
Australia’s marine biogeography revisited: back to the future?Crossref | GoogleScholarGoogle Scholar |

Waters, J., Condie, S., and Beheregaray, L. (2014). Does coastal topography constrain marine biogeography at an oceanographic interface? Marine and Freshwater Research 65, 969–977.
Does coastal topography constrain marine biogeography at an oceanographic interface?Crossref | GoogleScholarGoogle Scholar |

Wernberg, T., Russell, B. D., Thomsen, M. S., Gurgel, C. F. D., Bradshaw, C. J., Poloczanska, E. S., and Connell, S. D. (2011). Seaweed communities in retreat from ocean warming. Current Biology 21, 1828–1832.
Seaweed communities in retreat from ocean warming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKmurjF&md5=c7a4f1c8d8670d08e27174c98c63b3a0CAS | 22036178PubMed |

Willan, R. C., Russell, B. C., Murfet, N. B., Moore, K. L., McEnnulty, F. R., Horner, S. K., Hewitt, C. L., Dally, G. M., Campbell, M. L., and Bourke, S. T. (2000). Outbreak of Mytilopsis sallei (Recluz, 1849) (Bivalvia: Dreissenidae) in Australia. Molluscan Research 20, 25–30.
Outbreak of Mytilopsis sallei (Recluz, 1849) (Bivalvia: Dreissenidae) in Australia.Crossref | GoogleScholarGoogle Scholar |

Wilson, B. (1993). ‘Australian Marine Shells: Prosobranch Gastropods. Vol. 1.’ (Odyssey Publishing: Kallaroo, WA.)

Wilson, B. (1994). ‘Australian Marine Shells: Prosobranch Gastropods. Vol. 2.’ (Odyssey Publishing, Kallaroo, WA.)

Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M. J., Alexander, M., Qiu, B., Visbeck, M., Chang, P., and Giese, B. (2012). Enhanced warming over the global subtropical western boundary currents. Nature Climate Change 2, 161–166.
Enhanced warming over the global subtropical western boundary currents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVentb8%3D&md5=92a958705793cc4234c2daaaf007f434CAS |

York, K. L., Blacket, M. J., and Appleton, B. R. (2008). The Bassian Isthmus and the major ocean currents of southeast Australia influence the phylogeography and population structure of a southern Australian intertidal barnacle Catomerus polymerus (Darwin). Molecular Ecology 17, 1948–1961.
The Bassian Isthmus and the major ocean currents of southeast Australia influence the phylogeography and population structure of a southern Australian intertidal barnacle Catomerus polymerus (Darwin).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1Ors7g%3D&md5=d357f854916393711c3933d066499142CAS | 18363669PubMed |