Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Spatial and temporal variability of zooplankton–phytoplankton interactions in a large subtropical shallow lake dominated by non-toxic cyanobacteria

Luana Morais da Rosa A C , Luciana de Souza Cardoso A , Luciane Oliveira Crossetti A and David da Motta-Marques B
+ Author Affiliations
- Author Affiliations

A Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Biociências, Avenida Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil.

B UFRGS, Instituto de Pesquisas Hidráulicas (IPH), Avenida Bento Gonçalves, 9500, Porto Alegre, 91501-970, RS, Brazil.

C Corresponding author. Email: luanamorais.r@gmail.com

Marine and Freshwater Research 68(2) 226-243 https://doi.org/10.1071/MF15356
Submitted: 16 September 2015  Accepted: 16 January 2016   Published: 21 March 2016

Abstract

The size-specific and composition relationships between zooplankton and phytoplankton were evaluated in a large subtropical lake, as well as the influence of environmental variability on spatial scale considering temporal variation. Seasonal sampling was conducted for 2 years, covering three areas (south, centre and north) and the pelagic and littoral zones in Mangueira Lake (southern Brazil). The zooplankton to phytoplankton biomass ratio, usually, was very low, indicating a weak top-down control on phytoplankton; however, the strength of this interaction varied with zooplankton composition and temporal or spatial variability of the environmental factors. Environmental, bottom-up and probably top-down forces involved the structure of zooplankton, whereas phytoplankton was mainly controlled by nutrients. The phytoplankton predominant biomass consisted of colonial forms of non-toxic cyanobacteria. Rotifers (90–150 µm) were more able to benefit from phytoplankton production, whereas large-bodied zooplankton, when present in higher biomass, were not related to phytoplankton. High contribution of small ciliates and significant positive correlations between zooplankton and total phosphorus presuppose that microbial food webs primarily sustain the macro-zooplankton production in this system. The environmental variability induced by wind action or diversification of niches also played a substantial role in the structure of the plankton community, and the strength of zooplankton–phytoplankton interactions.

Additional keywords: BZ : BP ratio, inter-annual variation, micro-zooplankton, MLD maximum linear dimension, top-down.


References

Agasild, H., Zingel, P., Tõnno, I., Haberman, J., and Nõges, T. (2007). Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584, 167–177.
Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia).Crossref | GoogleScholarGoogle Scholar |

Agasild, H., Zingel, P., Karus, K., Kangro, K., Salujõe, J., and Nõges, T. (2013). Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshwater Biology 58, 183–191.
Does metazooplankton regulate the ciliate community in a shallow eutrophic lake?Crossref | GoogleScholarGoogle Scholar |

APHA (1999). ‘Standard Methods for the Examination of Water and Wastewater’, 20th edn. (American Public Health Association: Washington, DC.)

Beaver, J. R., and Crisman, T. L. (1989). The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology 17, 111–136.
The role of ciliated protozoa in pelagic freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7jslShtg%3D%3D&md5=b89efec382302381413e69d3b73b455bCAS | 24197241PubMed |

Blukacz, E. A., Shuter, B. J., and Sprules, W. G. (2009). Towards understanding the relationship between wind conditions and plankton patchiness. Limnology and Oceanography 54, 1530–1540.
Towards understanding the relationship between wind conditions and plankton patchiness.Crossref | GoogleScholarGoogle Scholar |

Blukacz, E. A., Sprules, W. G., Shuter, B. J., and Richards, J. P. (2010). Evaluating the effect of wind-driven patchiness on trophic interactions between zooplankton and phytoplankton. Limnology and Oceanography 55, 1590–1600.
Evaluating the effect of wind-driven patchiness on trophic interactions between zooplankton and phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Bottrell, H. H., Duncan, A., Gliwicz, Z. M. V., Grygierek, E., Herzig, A., Hillbricht-Ilkowska, A., Kurasawa, H., Larsson, P., and Weglenska, T. (1976). A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24, 419–456.

Brooks, J. L., and Dodson, S. I. (1965). Predation, body size, and composition of plankton. Science 150, 28–35.
Predation, body size, and composition of plankton.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvltlWqsA%3D%3D&md5=7a654e1668444e9275f0e67306666536CAS | 17829740PubMed |

Burian, A., Kainz, M. J., Schagerl, M., and Yasindi, A. (2014). Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers. Freshwater Biology 59, 1257–1265.
Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers.Crossref | GoogleScholarGoogle Scholar | 25866422PubMed |

Burns, C. W. (1968). The relationship between body size of filter feeding Cladocera and the maximum size of particle ingested. Limnology and Oceanography 13, 675–678.
The relationship between body size of filter feeding Cladocera and the maximum size of particle ingested.Crossref | GoogleScholarGoogle Scholar |

Butler, N. M., Suttle, C. A., and Neil, W. E. (1989). Discrimination by freshwater zooplankton between single algal cells differing in nutritional status. Oecologia 78, 368–372.
Discrimination by freshwater zooplankton between single algal cells differing in nutritional status.Crossref | GoogleScholarGoogle Scholar |

Cardoso, L. S., and Motta-Marques, D. M. L. (2004a). Structure of the zooplankton community in a subtropical shallow lake (Itapeva Lake – South of Brazil) and its relationship to hydrodynamic aspects. Hydrobiologia 518, 123–134.
Structure of the zooplankton community in a subtropical shallow lake (Itapeva Lake – South of Brazil) and its relationship to hydrodynamic aspects.Crossref | GoogleScholarGoogle Scholar |

Cardoso, L. S., and Motta-Marques, D. M. L. (2004b). Seasonal composition of the phytoplankton community in Itapeva Lake (north coast of Rio Grande do Sul – Brazil) in function of hydrodynamic aspects. Acta Limnologica Brasiliensia 16, 401–416.

Cardoso, L. S., and Motta-Marques, D. M. L. (2009). Hydrodynamics-driven plankton community in a shallow lake. Aquatic Ecology 43, 73–84.
Hydrodynamics-driven plankton community in a shallow lake.Crossref | GoogleScholarGoogle Scholar |

Cardoso, L. S., Fragoso, C. R. Jr, Souza, R. S., and Motta-Marques, D. (2012). Hydrodynamic control of plankton spatial and temporal heterogeneity in subtropical shallow lakes. In ‘Hydrodynamics – Natural Water Bodies’. (Eds H. E. Schulz, A. L. A. Simões, and R. J. Lobosco.) pp. 27–48. (Intech Open Access Publisher: Rijeka, Croatia.)

Carrick, H. L., Aldridge, F. J., and Schelske, C. L. (1993). Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38, 1179–1192.
Wind influences phytoplankton biomass and composition in a shallow, productive lake.Crossref | GoogleScholarGoogle Scholar |

Chang, C. W., Shiah, F. K., Wu, J. T., Miki, T., and Hsieh, C. (2014). The role of food availability and phytoplankton community dynamics in the seasonal succession of zooplankton community in a subtropical reservoir. Limnologica 46, 131–138.
The role of food availability and phytoplankton community dynamics in the seasonal succession of zooplankton community in a subtropical reservoir.Crossref | GoogleScholarGoogle Scholar |

Corno, G., and Jürgens, K. (2006). Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Applied and Environmental Microbiology 72, 78–86.
Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFansQ%3D%3D&md5=8207dc53f735df108706cf017a5bb736CAS | 16391028PubMed |

Crisman, T. L., and Beaver, J. R. (1990). Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia 200-201, 177–185.
Applicability of planktonic biomanipulation for managing eutrophication in the subtropics.Crossref | GoogleScholarGoogle Scholar |

Crossetti, L. O., Becker, V., Cardoso, L. S., Rodrigues, L. R., Costa, L. S., and Motta-Marques, D. (2013). Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica 43, 157–163.
Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake?Crossref | GoogleScholarGoogle Scholar |

Crossetti, L. O., Schneck, F., Freitas-Teixeira, L. M., and Motta-Marques, D. (2014). The influence of environmental variables on spatial and temporal phytoplankton dissimilarity in a large shallow subtropical lake (Lake Mangueira, southern Brazil). Acta Limnologica Brasiliensia 26, 111–118.

Cyr, H., and Curtis, J. M. (1999). Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118, 306–315.
Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities.Crossref | GoogleScholarGoogle Scholar |

de Paggi, S. B. J., Muñoz, S., Frau, D., Paggi, J. C., Scarabotti, P., Devercelli, M., and Meerhoff, M. (2012). Horizontal distribution of rotifers in a subtropical shallow lake (Paraná floodplain, Argentina). Fundamental and Applied Limnology 180, 321–333.

DeMott, W. R. (1990). Retention efficiency, perceptual bias, and active choice as mechanisms of food selection by suspension-feeding zooplankton. In ‘Behavioural Mechanisms of Food Selection’. (Ed. R. N. Hughes.) NATO ASI Series, G20, pp. 569–594. (Springer-Verlag: Berlin.)

DeMott, W. R., Gulati, R. D., and Van Donk, E. (2001). Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnology and Oceanography 46, 2054–2060.
Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Dumont, H. J., van De Velde, I., and Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97.
The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters.Crossref | GoogleScholarGoogle Scholar |

Faria, D. M., Cardoso, L. S., and Motta-Marques, D. (2015). Periphytic diatoms exhibit a longitudinal gradient in a large subtropical shallow lake. Inland Waters 5, 117–124.

Fragoso, C. R., Motta-Marques, D. M. L., Collischonn, W., Tucci, C. E. M., and van Ness, E. H. (2008). Modelling spatial heterogeneity of phytoplankton in Lake Mangueira, a large shallow subtropical lake in south Brazil. Ecological Modelling 219, 125–137.
Modelling spatial heterogeneity of phytoplankton in Lake Mangueira, a large shallow subtropical lake in south Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12kurnP&md5=021818ae33162d342b68e3b5cbf7c652CAS |

Gazulha, V., Montú, M., Motta-Marques, D. M. L., and Bonecker, C. C. (2011). Effects of natural banks of free-floating plants on zooplankton community in a shallow subtropical lake in southern Brazil. Brazilian Archives of Biology and Technology 54, 745–754.
Effects of natural banks of free-floating plants on zooplankton community in a shallow subtropical lake in southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Gilbert, J. J., and Starkweather, P. L. (1977). Feeding in the rotifer Brachionus calyciflorus. I. Regulatory mechanisms. Oecologia 28, 125–131.
Feeding in the rotifer Brachionus calyciflorus. I. Regulatory mechanisms.Crossref | GoogleScholarGoogle Scholar |

Gołdyn, R., and Kowalczewska-Madura, K. (2007). Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland. Journal of Plankton Research 30, 33–42.
Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland.Crossref | GoogleScholarGoogle Scholar |

Gragnani, A., Scheffer, M., and Rinaldi, S. (1999). Top-down control of cyanobacteria: a theoretical analysis. American Naturalist 153, 59–72.
Top-down control of cyanobacteria: a theoretical analysis.Crossref | GoogleScholarGoogle Scholar |

Haig-They, N., Finkler-Ferreira, T., Motta-Marques, D., Rodrigues, L. R., Silveira, S. B., Arriada, A. A., Lürling, M., Crossetti, L. O., Cardoso, L. S., Fragoso, C. R. Jr, and van Nes, E. H. (2015). Allelopathic effects of macrophytes in subtropical shallow lakes. In ‘New Developments in Allelopathy Research’, 1st edn. (Ed J. E. Price.) Chapter 5, pp. 89–134. (Nova Publishers: New York.)

Havens, K. E. (2002). Zooplankton structure and potential food web interactions in the plankton of subtropical chain-of-lakes. The Scientific World Journal 2, 926–942.
Zooplankton structure and potential food web interactions in the plankton of subtropical chain-of-lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVyhtb4%3D&md5=2ded762654fa32001003e51bb619dae2CAS | 12805947PubMed |

Havens, K. E., and Beaver, J. R. (2013). Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia 703, 177–187.
Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFSgtb%2FP&md5=9762293e3ea45c1d6d559caaeb5a1665CAS |

Havens, K. E., Elia, A. C., Taticchi, M. I., and Fulton, R. S. (2009). Zooplankton-phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628, 165–175.
Zooplankton-phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls12gtLo%3D&md5=35194f90c28e6575bb93a414161363d0CAS |

Havens, K. E., Beaver, J. R., and East, T. L. (2011). Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668, 49–60.
Composition, size, and biomass of zooplankton in large productive Florida lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVCkt7g%3D&md5=2407860d58edbdbb1178a16a7fe1520aCAS |

Hessen, D. O., Van Donk, E., and Gulati, R. (2005). Seasonal seston stoichiometry: effects on zooplankton in cyanobacteria-dominated lakes. Journal of Plankton Research 27, 449–460.
Seasonal seston stoichiometry: effects on zooplankton in cyanobacteria-dominated lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsl2js70%3D&md5=9b4b8bec66e25ac0380eece1820dd0a1CAS |

Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424.
Biovolume calculation for pelagic and benthic microalgae.Crossref | GoogleScholarGoogle Scholar |

Jeppesen, E. J., Meerhoff, M., Jacobsen, B. A., Hansen, R. S., Søndergaard, M., Jensen, J. P., Lauridsen, T. L., Mazzeo, N., and Branco, C. W. C. (2007). Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia 581, 269–285.
Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVWju7s%3D&md5=08294dfaf4d4cc5fd4788a414211c23aCAS |

Jespersen, A. M., and Christoffersen, K. (1987). Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Hydrobiologia 109, 445–454.
| 1:CAS:528:DyaL2sXkvFaqu78%3D&md5=bfb133564c0fb393e5fc4745e9fa0196CAS |

Jürgens, K., Pernthaler, J., Schalla, S., and Amann, R. (1999). Morphological and compositional changes in a planktonic bacterial community in response to enchanced protozoan grazing. Applied and Environmental Microbiology 65, 1241–1250.
| 10049890PubMed |

Kisand, V., and Nõges, T. (1998). Seasonal dynamics of bacterio- and phytoplankton in large and shallow eutropic Lake Võrtsjärv, Estonia. International Review of Hydrobiology 83, 205–216.
Seasonal dynamics of bacterio- and phytoplankton in large and shallow eutropic Lake Võrtsjärv, Estonia.Crossref | GoogleScholarGoogle Scholar |

Kist, D. L. (2012). Reguladores da variação temporal e espacial da comunidade bacteriana em lagoa rasa subtropical. M.Sc. thesis, Universidade Federal do Rio Grande do Sul, Brazil. [In Portuguese].

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263.

Lacerot, G., Kruk, C., Lürling, M., and Scheffer, M. (2013). The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology 58, 494–503.
The role of subtropical zooplankton as grazers of phytoplankton under different predation levels.Crossref | GoogleScholarGoogle Scholar |

Lund, J. W. G., Kipling, C., and LeCren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170.
The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting.Crossref | GoogleScholarGoogle Scholar |

Mackereth, F. J. H., Heron, J., and Talling, J. F. (1989). Water analysis: some revised methods for limnologists. Scientific Publication 36, Freshwater Biological Association, Ambleside, UK.

Malley, D. F., Lawrence, S. G., Maciver, M. A., and Findlay, W. J. (1989). Range of variation in estimates of dry weight for planktonic Crustacea and Rotifera from temperate North American lakes. Canadian Technical Report of Fisheries and Aquatic Sciences 21, Fisheries and Oceans, Canada, Winnipeg, MB, Canada.

Masson, S., Pinel-Alloul, B., and Dutilleul, P. (2004). Spatial heterogeneity of zooplankton biomass and size structure in southern Québec lakes: variation among lakes and within lake among epi-, meta- and hypolimnion strata. Journal of Plankton Research 26, 1441–1458.
Spatial heterogeneity of zooplankton biomass and size structure in southern Québec lakes: variation among lakes and within lake among epi-, meta- and hypolimnion strata.Crossref | GoogleScholarGoogle Scholar |

McCune, B., and Mefford, M. J. (2011). ‘PC-ORD. Multivariate Analysis of Ecological Data. Version 6.08.’ (MJM Software Design: Gleneden Beach, OR, USA.)

Meerhoff, M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W., and Jeppesen, E. (2006). An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51, 1320–1330.
An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes.Crossref | GoogleScholarGoogle Scholar |

Meerhoff, M., Iglesias, C., Teixeira-de-Mello, F., Clemente, J. M., Jensen, E., Lauridsen, T. L., and Jeppesen, E. (2007). Effects of contrasting climates and habitat complexity on community structure and predator avoidance behaviour of zooplankton in the shallow lake littoral. Freshwater Biology 52, 1009–1021.
Effects of contrasting climates and habitat complexity on community structure and predator avoidance behaviour of zooplankton in the shallow lake littoral.Crossref | GoogleScholarGoogle Scholar |

Motta-Marques, D. M. L., Tucci, C., Calazans, D., Callegaro, V. L. M., and Villanueva, A. (2002). O Sistema Hidrológico do Taim – Sítio 7. In ‘Os Sítios e o Programa Brasileiro de Pesquisas Ecológicas de Longa Duração’. (Eds U. Seeliger, C. V. Cordazzo and F. Barbosa.) pp. 125–144. (MCT – Conselho Nacional de Desenvolvimento Científico e Tecnológico: Belo Horizonte, Brazil.)

Muylaert, K., Declerck, S., Geenens, V., Van Wichelen, J., Degans, H., Vandekerkhove, J., Van der Gucht, K., Vloemans, N., Rommens, W., Rejas, D., Urrutia, R., Sabbe, K., Gillis, M., Decleer, K., De Meester, L., and Vyverman, W. (2003). Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium. Aquatic Ecology 37, 137–150.
Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium.Crossref | GoogleScholarGoogle Scholar |

Pappas, J. L., and Stoermer, E. F. (1996). Quantitative method for determining a representative algal sample count. Journal of Phycology 32, 693–696.
Quantitative method for determining a representative algal sample count.Crossref | GoogleScholarGoogle Scholar |

Peters, R. H., and Downing, J. A. (1984). Empirical analysis of zooplankton filtering and feeding rates. Limnology and Oceanography 29, 763–784.
Empirical analysis of zooplankton filtering and feeding rates.Crossref | GoogleScholarGoogle Scholar |

Pinel-Alloul, B. (1995). Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia 300–301, 17–42.
Spatial heterogeneity as a multiscale characteristic of zooplankton community.Crossref | GoogleScholarGoogle Scholar |

Pinel-Alloul, B., Downing, J. A., Pérusse, M., and Codin-Blumer, G. (1988). Spatial heterogeneity in freshwater zooplankton: systematic variation with body-size, depth and sampling scale. Ecology 69, 1393–1400.
Spatial heterogeneity in freshwater zooplankton: systematic variation with body-size, depth and sampling scale.Crossref | GoogleScholarGoogle Scholar |

Pinel-Alloul, B., Guay, C., Angeli, N., Legendre, P., Dutilleul, P., Balvay, G., Gerdeaux, D., and Guillard, J. (1999). Large-scale spatial heterogeneity of macrozooplankton in Lake Geneva. Canadian Journal of Fisheries and Aquatic Sciences 56, 1437–1451.
Large-scale spatial heterogeneity of macrozooplankton in Lake Geneva.Crossref | GoogleScholarGoogle Scholar |

Preisendorfer, R. W. (1986). Secchi disk science: visual optics of natural waters. Limnology and Oceanography 31, 909–926.
Secchi disk science: visual optics of natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXit1yltw%3D%3D&md5=21763f720b7f8413a19e98529bebc2b9CAS |

Rodrigues, L. R., Fontoura, N. F., and Motta-Marques, D. M. L. (2014). Food web structure in a subtropical coastal lake: how phylogenetic constraints may affect species linkages. Marine and Freshwater Research 65, 453–465.
Food web structure in a subtropical coastal lake: how phylogenetic constraints may affect species linkages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1Whs74%3D&md5=394eb9897f6244a0776f3eabd1facf69CAS |

Rodrigues, L. R., Motta-Marques, D., and Fontoura, N. F. (2015). Fish community in a large coastal subtropical lake: how an environmental gradient may affect the structure of trophic guilds. Limnetica 34, 495–506.

Ruttner-Kolisko, A. (1977). Suggestions for biomass calculations of plankton rotifers. Archiv für Hydrobiologie 8, 71–76.

Schabetsberger, R., Luger, M. S., Drozdowski, G., and Jagsch, A. (2009). Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biological Invasions 11, 1335–1345.
Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction.Crossref | GoogleScholarGoogle Scholar |

Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., and Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8, 275–279.
Alternative equilibria in shallow lakes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itVyqtQ%3D%3D&md5=1c1264734f9340956062c8970b332346CAS |

Sommer, U., Gliwicz, Z. M., Lampert, W., and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106, 433–471.

Utermöhl, H. (1958). Zur Vervollkomnung der quantitativen Phytoplankton: Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1–38.

Velho, L. F. M., Lansac-Toha, F. A., and Bini, L. M. (1999). Spatial and temporal variation in densities of testate amoebae in the plankton of the Upper Paraná River floodplain, Brazil. Hydrobiologia 411, 103–113.
Spatial and temporal variation in densities of testate amoebae in the plankton of the Upper Paraná River floodplain, Brazil.Crossref | GoogleScholarGoogle Scholar |

Wang, S., Xie, P., Wu, S., and Wang, H. (2007a). Crustacean zooplankton size structure in aquaculture lakes: is larger size structure always associated with higher grazing pressure? Hydrobiologia 575, 203–209.
Crustacean zooplankton size structure in aquaculture lakes: is larger size structure always associated with higher grazing pressure?Crossref | GoogleScholarGoogle Scholar |

Wang, S., Xie, P., Wu, S., and Liang, X. (2007b). Phytoplankton biomass in relation to nutrients and zooplankton in thirty subtropical lakes adjacent to the Yangtze River, China. Fundamental and Applied Limnology 169, 49–55.

Weithoff, G., and Walz, N. (1995). Influence of the filamentous cyanobacterium Planktothrix agardhii on population growth and reproductive pattern of the rotifer Brachionus calyciflorus. Hydrobiologia 313–314, 381–386.
Influence of the filamentous cyanobacterium Planktothrix agardhii on population growth and reproductive pattern of the rotifer Brachionus calyciflorus.Crossref | GoogleScholarGoogle Scholar |

Wetzel, R. G., and Likens, G. E. (2000). ‘Limnological Analyses’, 3th edn. (Springer-Verlag: New York.)

Work, K. A., and Havens, K. E. (2003). Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. Journal of Plankton Research 25, 1301–1306.
Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake.Crossref | GoogleScholarGoogle Scholar |

Work, W., Havens, K., Sharfstein, B., and East, T. (2005). How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake? Journal of Plankton Research 27, 357–372.
How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVWqurg%3D&md5=046dd7b324ab136c41f4de16fc2f7107CAS |

Ye, L., Chang, C. Y., García-Comas, C., Gong, G. C., and Hsieh, C. (2013). Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. Journal of Animal Ecology 82, 1052–1061.
Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning.Crossref | GoogleScholarGoogle Scholar | 23506226PubMed |

Zingel, P., Agasild, H., Nõges, T., and Kisand, V. (2007). Ciliates are the dominant grazers on pico and nanoplankton in a shallow, naturally highly eutrophic lake. Microbial Ecology 53, 134–142.
Ciliates are the dominant grazers on pico and nanoplankton in a shallow, naturally highly eutrophic lake.Crossref | GoogleScholarGoogle Scholar | 17186145PubMed |