Register      Login
New South Wales Public Health Bulletin New South Wales Public Health Bulletin Society
Supporting public health practice in New South Wales
RESEARCH ARTICLE

The use of mycobacterial interspersed repetitive unit typing and whole genome sequencing to inform tuberculosis prevention and control activities

Gwendolyn L. Gilbert A B C and Vitali Sintchenko A B
+ Author Affiliations
- Author Affiliations

A Centre for Infectious Diseases and Microbiology, Westmead Hospital

B Sydney Institute for Emerging Infectious Diseases and Biosecurity, The University of Sydney

C Corresponding author. Email: lyn.gilbert@sydney.edu.au

NSW Public Health Bulletin 24(1) 10-14 https://doi.org/10.1071/NB12106
Published: 15 July 2013

Abstract

Molecular strain typing of Mycobacterium tuberculosis has been possible for only about 20 years; it has significantly improved our understanding of the evolution and epidemiology of Mycobacterium tuberculosis and tuberculosis disease. Mycobacterial interspersed repetitive unit typing, based on 24 variable number tandem repeat unit loci, is highly discriminatory, relatively easy to perform and interpret and is currently the most widely used molecular typing system for tuberculosis surveillance. Nevertheless, clusters identified by mycobacterial interspersed repetitive unit typing sometimes cannot be confirmed or adequately defined by contact tracing and additional methods are needed. Recently, whole genome sequencing has been used to identify single nucleotide polymorphisms and other mutations, between genotypically indistinguishable isolates from the same cluster, to more accurately trace transmission pathways. Rapidly increasing speed and quality and reduced costs will soon make large scale whole genome sequencing feasible, combined with the use of sophisticated bioinformatics tools, for epidemiological surveillance of tuberculosis.


References

[1]  van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 1993; 31 406–9.
| 1:STN:280:DyaK3s7mtlaruw%3D%3D&md5=33ae001261a72346b2990f42aed3e699CAS | 8381814PubMed |

[2]  Houben RMGJ, Glynn JR. A systematic review and meta-analysis of molecular epidemiological studies of tuberculosis: development of a new tool to aid interpretation. Trop Med Int Health 2009; 14 892–909.
A systematic review and meta-analysis of molecular epidemiological studies of tuberculosis: development of a new tool to aid interpretation.Crossref | GoogleScholarGoogle Scholar |

[3]  Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997; 35 907–14.
| 1:CAS:528:DyaK2sXitlartL8%3D&md5=ec9159d5e3ed9af0811990cab8a93c4cCAS | 9157152PubMed |

[4]  Soini H, Pan X, Teeter L, Musser JM, Graviss EA. Transmission dynamics and molecular characterization of Mycobacterium tuberculosis isolates with low copy numbers of IS6110. J Clin Microbiol 2001; 39 217–21.
Transmission dynamics and molecular characterization of Mycobacterium tuberculosis isolates with low copy numbers of IS6110.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlCktA%3D%3D&md5=16892a0cac75c0566b99bc9c31a71880CAS | 11136774PubMed |

[5]  Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valetudie G, et al. Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 2003; 41 1963–70.
Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study.Crossref | GoogleScholarGoogle Scholar | 12734235PubMed |

[6]  Buu TN, Huyen MN, Lan NTN, Quy HT, Hen NV, Zignol M, et al. The Beijing genotype is associated with young age and multidrug-resistant tuberculosis in rural Vietnam. Int J Tuberc Lung Dis 2009; 13 900–6.
| 1:STN:280:DC%2BD1MvksFSmsA%3D%3D&md5=756c19a522551709e75c71180bbf20a2CAS | 19555542PubMed |

[7]  Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 2000; 36 762–71.
Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Gmtbk%3D&md5=80b72a0dd3ae9d61da2b5e8865b155c2CAS | 10844663PubMed |

[8]  Cowan LS, Diem L, Monson T, Wand P, Temporado D, Oemig TV, et al. Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States. J Clin Microbiol 2005; 43 688–95.
Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1aqs78%3D&md5=dc43b261ad8088dbafd7ee40bc2b6af6CAS | 15695665PubMed |

[9]  van Deutekom H, Supply P, de Haas PEW, Willery E, Hoijng SP, Locht C, et al. Molecular typing of Mycobacterium tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis, a more accurate method for identifying epidemiological links between patients with tuberculosis. J Clin Microbiol 2005; 43 4473–9.
Molecular typing of Mycobacterium tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis, a more accurate method for identifying epidemiological links between patients with tuberculosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOrtLvM&md5=e7aff9e55901a6ae8d6a8a3eac2cdb6dCAS | 16145094PubMed |

[10]  Gallego B, Sintchenko V, Jelfs P, Coiera E, Gilbert GL. Three-year longitudinal study of genotypes of Mycobacterium tuberculosis in a low prevalence population. Pathology 2010; 42 267–72.
Three-year longitudinal study of genotypes of Mycobacterium tuberculosis in a low prevalence population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVSgtLs%3D&md5=af382540d2be1647ad2521d0e829630dCAS | 20350221PubMed |

[11]  Allix-Béguec C, Fauville-Dufaux M, Supply P. Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 2008; 46 1398–406.
Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis.Crossref | GoogleScholarGoogle Scholar | 18234864PubMed |

[12]  Merritt TD, Sintchenko V, Jelfs P, Worthing M, Robinson B, Durrheim DN, et al. An outbreak of pulmonary tuberculosis in young Australians. Med J Aust 2007; 186 240–2.
| 17391086PubMed |

[13]  Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 2006; 44 4498–510.
Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslKjsQ%3D%3D&md5=b34947693766b94f9b9b98be3ab0b905CAS | 17005759PubMed |

[14]  Christianson S, Wolfe J, Orr P, Karlowsky J, Levett PN, Horsman GB, et al. Evaluation of 24 locus MIRU-VNTR genotyping of Mycobacterium tuberculosis isolates in Canada. Tuberculosis (Edinb) 2010; 90 31–8.
Evaluation of 24 locus MIRU-VNTR genotyping of Mycobacterium tuberculosis isolates in Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1KgsLs%3D&md5=c5b55eb75694b9d997a73b7b354d2609CAS | 20056488PubMed |

[15]  Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S. Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 2008; 46 2692–9.
Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates.Crossref | GoogleScholarGoogle Scholar | 18550737PubMed |

[16]  Weniger T, Krawczyk J, Supply P, Niemann S, Harmsen D. MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res 2010; 38 W326–31.
MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVSru7c%3D&md5=a030a0e3e9f74f8f9c97d011cbd259f4CAS | 20457747PubMed |

[17]  de Beer JL, Kremer K, Kodmon C, Supply P, van Soolingen D. Global Network for the Molecular Surveillance of Tuberculosis 2009. First worldwide proficiency study on variable-number tandem-repeat typing of Mycobacterium tuberculosis complex strains. J Clin Microbiol 2012; 50 662–9.
Global Network for the Molecular Surveillance of Tuberculosis 2009. First worldwide proficiency study on variable-number tandem-repeat typing of Mycobacterium tuberculosis complex strains.Crossref | GoogleScholarGoogle Scholar | 22170917PubMed |

[18]  Jelfs P, Sintchenko V, Gilbert GL. Genotyping of Mycobacterium tuberculosis in New South Wales: results from 18 months of a statewide trial. N S W Public Health Bull 2006; 17 81–5.
Genotyping of Mycobacterium tuberculosis in New South Wales: results from 18 months of a statewide trial.Crossref | GoogleScholarGoogle Scholar | 17036086PubMed |

[19]  Dobler CC, Crawford ABH, Jelfs PJ, Gilbert GL, Marks GB. Recurrence of tuberculosis in a low-incidence setting. Eur Respir J 2009; 33 160–7.
Recurrence of tuberculosis in a low-incidence setting.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2Fks1Sktw%3D%3D&md5=8d8c5867963f0b8afe0274bc672bb448CAS | 18829676PubMed |

[20]  Devlin S, Passmore E. Ongoing transmission of tuberculosis in Aboriginal communities in NSW. N S W Public Health Bull 2013; 24 38–42.

[21]  Luo T, Yang C, Gagneux S, Gicquel B, Mei J, Gao Q. Combination of single nucleotide polymorphism and variable-number tandem repeats for genotyping a homogenous population of Mycobacterium tuberculosis Beijing strains in China. J Clin Microbiol 2012; 50 633–9.
Combination of single nucleotide polymorphism and variable-number tandem repeats for genotyping a homogenous population of Mycobacterium tuberculosis Beijing strains in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1eqsbc%3D&md5=56ad842ba4e96e6e17f8ed78ef41498cCAS | 22205801PubMed |

[22]  Fenner L, Gagneux S, Helbling P, Battegay M, Rieder HL, Pfyffer GE, et al. Mycobacterium tuberculosis transmission in a country with low tuberculosis incidence: role of immigration and HIV infection. J Clin Microbiol 2012; 50 388–95.
Mycobacterium tuberculosis transmission in a country with low tuberculosis incidence: role of immigration and HIV infection.Crossref | GoogleScholarGoogle Scholar | 22116153PubMed |

[23]  Schürch AC, Kremer K, Kiers A, Daviena O, Boeree MJ, Siezen RJ, et al. The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale. Infect Genet Evol 2010; 10 108–14.
The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale.Crossref | GoogleScholarGoogle Scholar | 19835997PubMed |

[24]  Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 2011; 364 730–9.
Whole-genome sequencing and social-network analysis of a tuberculosis outbreak.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1ymsb0%3D&md5=99afe3a799c92692740b825382df1139CAS | 21345102PubMed |

[25]  National Human Genome Research Institute, National Institutes of Health. DNA sequencing costs. Available at: www.genome.gov/sequencingcosts (Cited 7 August 2012).