Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Parthenogenetic activation of rat oocytes and their development in vitro

S. Roh A , N. Malakooti A , J. R. Morrison A , A. O. Trounson A and Z. T. Du A B
+ Author Affiliations
- Author Affiliations

A Monash Institute of Reproduction and Development, Monash University, 246 Clayton Road, Clayton, Vic. 3168, Australia.

B To whom correspondence should be addressed. email: zhongtao.du@med.monash.edu.au

Reproduction, Fertility and Development 15(2) 135-140 https://doi.org/10.1071/RD02096
Submitted: 11 November 2002  Accepted: 7 April 2003   Published: 7 April 2003

Abstract

The present study was performed to determine suitable methods for parthenogenetic activation and subsequent development of rat oocytes in vitro. In the first series of experiments, the ability of electrical pulses, strontium, ethanol and ionomycin to activate Sprague-Dawley (SD) rat oocytes was examined. The synergistic effect of strontium and cycloheximide or puromycin was also examined in the second series of experiments. In the third series of experiments, the development of F1 hybrid (SD × Dark Agouti) parthenotes activated with different concentrations of strontium (10–0.08 mM) was compared with that of SD parthenotes. The effect of the timing of activation (10 min and 2, 4 and 6 h after cervical dislocation) was also assessed in a fourth series of experiments. The oocytes activated by strontium showed higher pronuclear formation and cleavage rates than those in the other groups (P < 0.05). Higher blastocyst development was obtained from parthenotes activated by strontium and strontium–cycloheximide compared with the strontium–puromycin group (P < 0.01). However, the total cell number of blastocysts from the strontium–cycloheximide activation group was higher than that of other groups (P < 0.05). With strontium (2.5–10 mM) treatment, 40.9% of blastocysts were obtained from F1 hybrid oocytes, whereas 22.9% were obtained from SD (P < 0.01). The oocytes activated 10 min or 2 h following cervical dislocation showed higher blastocyst development than those of the 4 and 6 h groups (P < 0.01). These results suggest that strontium–cycloheximide produces the highest parthenogenetic activation rate in the rat and that oocytes must be activated by 2 h after cervical dislocation.

Extra keywords: F1 hybrid


References

Bos-Mikich, A. , Swann, K. , and Whittingham, D. G. (1995). Calcium oscillations and protein synthesis inhibition synergistically activate mouse oocytes Mol. Reprod. Dev. 41, 84–90.
PubMed |

Campbell, K. H. S. , Ritchie, W. A. , and Wilmut, I. (1993). Nuclear–cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development Biol. Reprod. 49, 933–42.
PubMed |

Ernst, C. A. , Leibfried-Rutledge, L. M. , and Dentine, M. R. (1999). Development of an efficient method to produce uniformly haploid parthenogenones J. Exp. Zool. 284, 112–18.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fitchev, P. , Taborn, G. , Garton, R. , and Iannaccone, P. (1999). Nuclear transfer in the rat: potential access to the germline Transplant. Proc. 31, 1525–30.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hashimoto, N. , and Kishimoto, T. (1988). Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation Dev. Biol. 126, 242–52.
PubMed |

Hayes, E. , Galea, S. , Verkuylen, A. , Pera, M. , Morrison, J. , Lacham-Kaplan, O. , and Trounson, A. (2001). Nuclear transfer of adult and genetically modified fetal cells of the rat Physiol. Genomics 5, 193–203.
PubMed |

Iannaccone, P. , Taborn, G. , and Garton, R. (2001). Preimplantation and postimplantation development of rat embryos cloned with cumulus cells and fibroblasts Zygote 9, 135–43.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jiang, J.-Y. , Mizuno, S. , Mizutani, E. , Sasada, H. , and Sato, E. (2002). Parthenogenetic activation and subsequent development of rat oocytes in vitro  Mol. Reprod. Dev. 61, 120–5.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kato, M. , Hirabayashi, M. , Aoto, T. , Ito, K. , Ueda, M. , and Hochi, S. (2001). Strontium-induced activation regimen for rat oocytes in somatic cell nuclear transplantation J. Reprod. Dev. 47, 407–13.
Crossref | GoogleScholarGoogle Scholar |

Keefer, C. L. , and Schuetz, A. W. (1982). Spontaneous activation of ovulated rat oocytes during in vitro culture J. Exp. Zool. 224, 371–7.
PubMed |

Kim, N. H. , Uhm, S. J. , Ju, J. Y. , Lee, H. T. , and Chung, K. S. (1997). Blastocoel formation and cell allocation to the inner cell mass and trophectoderm in haploid and diploid pig parthenotes developing in vitro.  Zygote 5, 365–70.
PubMed |

Kubiak, J. Z. (1989). Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest Dev. Biol. 136, 537–45.
PubMed |

Meyerhof, P. G. , and Masui, Y. (1977). Ca and Mg control of cytostatic factors from Rana pipiens oocytes which cause metaphase and cleavage arrest Dev. Biol. 61, 214–29.
PubMed |

Miyoshi, K. , Kono, T. , and Niwa, K. (1997). Stage-dependent development of rat 1-cell embryos in a chemically defined medium after fertilization in vivo and in vitro.  Biol. Reprod. 56, 180–5.
PubMed |

Nagai, T. (1987). Parthenogenetic activation of cattle follicular oocytes in vitro with ethanol Gamete Res. 16, 243–9.
PubMed |

National Research Council , and  Clark, J. D. (1996). Guide for Care and Use of Laboratory Animals (National Academy of Sciences: Washington DC, USA.)

Nussbaum, D. J. , and Prather, R. S. (1995). Differential effects of protein synthesis inhibitors on porcine oocyte activation Mol. Reprod. Dev. 41, 70–5.
PubMed |

O’Neill, G. T. , Rolfe, L. R. , and Kaufman, M. H. (1991). Developmental potential and chromosome constitution of strontium-induced mouse parthenogenones Mol. Reprod. Dev. 30, 214–19.
PubMed |

Powell, R. , and Barnes, F. L. (1992). The kinetics of oocyte activation and polar body formation in bovine embryo clones Mol. Reprod. Dev. 33, 53–8.
PubMed |

Verlhac, M. H. , De Pennart, H. , Maro, B. , Cobb, M. H. , and Clarke, H. (1993). MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes Dev. Biol. 158, 330–40.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ware, C. B. , Barnes, F. L. , Maiki-Laurila, M. , and First, N. L. (1989). Age dependence of bovine oocyte activation Gamete Res. 22, 265–75.
PubMed |

Zernicka-Goetz, M. (1991). Spontaneous and induced activation of rat oocytes Mol. Reprod. Dev. 28, 169–76.
PubMed |