Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Embryogenomics of pre-implantation mammalian development: current status

Minoru S. H. Ko
+ Author Affiliations
- Author Affiliations

Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA. email: kom@grc.nia.nih.gov

Reproduction, Fertility and Development 16(2) 79-85 https://doi.org/10.1071/RD03080
Submitted: 1 August 2003  Accepted: 1 October 2003   Published: 2 January 2004

Abstract

Pre-implantation development is marked by many critical molecular events, including the maternal to zygotic transition and the first differentiation of cells. Understanding such events is important, for both basic reproductive biology and practical applications, including regenerative medicine and livestock production. Scarcity of materials has hampered the progress of the field, but systematic genomics approaches are beginning to be applied to the study of pre-implantation development, resulting in unprecedented amounts of data about the pre-implantation process. The first step in embryogenomics is to collect and sequence cDNAs (expressed sequence tags (ESTs)) for genes that are expressed and function in these early embryos. Mouse work is the most advanced, with 140 111 ESTs derived from all stages of pre-implantation development currently available in the public sequence database. For other mammals, at present only approximately 1000 ESTs can be found in the public database, but efforts by several groups are generating cDNA libraries and ESTs. In the present review, the current status of the implementation of these investigative tools for mammalian pre-implantation embryos is discussed.


Acknowledgements

The author thanks Mr Dawood Dudekula for help analysing the public EST sequence database, Dr David Schlessinger for critical reading of the manuscript, Dr Toshio Hamatani for discussion, and the past and current members of his laboratory for their indispensable contributions to mouse pre-implantation genomics. The author thanks Drs Randall S. Prather, Marc-André Sirard, Andrew J. Watson and W. Allan King for sharing their unpublished information.


References

Adjaye, J. , Daniels, R. , and Monk, M. (1998). The construction of cDNA libraries from human single pre-implantation embryos and their use in the study of gene expression during development. J. Assist. Reprod. Genet. 15, 344–348.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Brambrink, T. , Wabnitz, P. , Halter, R. , Klocke, R. , Carnwath, J. , Kues, W. , Wrenzycki, C. , Paul, D. , and Niemann, H. (2002). Application of cDNA arrays to monitor mRNA profiles in single pre-implantation mouse embryos. Biotechniques 33, 376–385.
PubMed |

Brenner, S. , Johnson, M. , Bridgham, J. , Golda, G. , and Lloyd, D. H. , et al. (2000). Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cabot, R. A. , and Prather, R. S. (2003). Cleavage stage porcine embryos may have differing developmental requirements for karyopherins alpha2 and alpha3. Mol. Reprod. Dev. 64, 292–301.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Carter, M. G. , Hamatani, T. , Sharov, A. A. , Carmack, C. E. , and Qian, Y. , et al. (2003). In situ-synthesized novel microarray optimized for mouse stem cell and early developmental expression profiling. Genome Res. 13, 1011–1021.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Chaurand, P. , Schwartz, S. A. , and Caprioli, R. M. (2002). Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections. Curr. Opin. Chem. Biol. 6, 676–681.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Choi, I. , Simmen, R. C. , and Simmen, F. A. (1996). Molecular cloning of cytochrome P450 aromatase complementary deoxyribonucleic acid from periimplantation porcine and equine blastocysts identifies multiple novel 5′-untranslated exons expressed in embryos, endometrium, and placenta. Endocrinology 137, 1457–1467.
PubMed |

Choo, K. B. , Chen, H. H. , Cheng, W. T. , Chang, H. S. , and Wang, M. (2001). In silico mining of EST databases for novel pre-implantation embryo-specific zinc finger protein genes. Mol. Reprod. Dev. 59, 249–255.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Christoffels, A. , Gelder, A. , Greyling, G. , Miller, R. , Hide, T. , and Hide, W. (2001). STACK: sequence tag alignment and consensus knowledgebase. Nucleic Acids Res. 29, 234–238.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Edwards, R. G. (2003). Aspects of the molecular regulation of early mammalian development. Reprod. Biomed. Online 6, 97–113.
PubMed |

Gardner, R. L. (2002). Thoughts and observations on patterning in early mammalian development. Reprod. Biomed. Online 4, 46–51.Suppl. 1


Hochedlinger, K. , and Jaenisch, R. (2002). Nuclear transplantation: lessons from frogs and mice. Curr. Opin. Cell Biol. 14, 741–748.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hwang, S. Y. , Oh, B. , Knowles, B. B. , Solter, D. , and Lee, J. S. (2001). Expression of genes involved in mammalian meiosis during the transition from egg to embryo. Mol. Reprod. Dev. 59, 144–158.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kanka, J. , Bryova, A. , Duranthon, V. , Oudin, J. F. , Peynot, N. , and Renard, J. P. (2003). Identification of differentially expressed mRNAs in bovine pre-implantation embryos. Zygote 11, 43–52.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kargul, G. J. , Dudekula, D. B. , Qian, Y. , Lim, M. K. , Jaradat, S. A. , Tanaka, T. S. , Carter, M. G. , and Ko, M. S. H. (2001). Verification and initial annotation of the NIA mouse 15K cDNA clone set. Nat. Genet. 28, 17–18.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kato, K. (1997). Adaptor-tagged competitive PCR: a novel method for measuring relative gene expression. Nucleic Acids Res. 25, 4694–4696.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ko, M. S. H. (2001). Embryogenomics: developmental biology meets genomics. Trends Biotechnol. 19, 511–518.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ko, M. S. H. , Kitchen, J. R. , Wang, X. , Threat, T. A. , and Hasegawa, A. , et al. (2000). Large-scale cDNA analysis reveals phased gene expression patterns during pre-implantation mouse development. Development 127, 1737–1749.
PubMed |

Lander, E. S. , Linton, L. M. , Birren, B. , Nusbaum, C. , and Zody, M. C. , et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Latham, K. E. , and Schultz, R. M. (2001). Embryonic genome activation. Front. Biosci. 6, D748–D759.
PubMed |

Latham, K. E. , Garrels, J. I. , Chang, C. , and Solter, D. (1991). Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development 112, 921–932.
PubMed |

Marra, M. , Hillier, L. , Kucaba, T. , Allen, M. , and Barstead, R. , et al. (1999). An encyclopedia of mouse genes. Nat. Genet. 21, 191–194.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Martin, K. L. , and Leese, H. J. (1999). Role of developmental factors in the switch from pyruvate to glucose as the major exogenous energy substrate in the pre-implantation mouse embryo. Reprod. Fertil. Dev. 11, 425–433.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Memili, E. , and First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote 8, 87–96.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Morozov, G. , Verlinsky, O. , Rechitsky, S. , Kukharenko, V. , Goltsman, E. , Ivakhnenko, V. , Gindilis, V. , Strom, C. , Kuliev, A. , and Verlinsky, Y. (1998). Sequence analysis of libraries from individual human blastocysts. J. Assist. Reprod. Genet. 15, 338–343.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nothias, J. Y. , Majumder, S. , Kaneko, K. J. , and DePamphilis, M. L. (1995). Regulation of gene expression at the beginning of mammalian development. J. Biol. Chem. 270, 22077–22080.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Okazaki, Y. , Furuno, M. , Kasukawa, T. , Adachi, J. , and Bono, H. , et al. (2002a). Analysis of the mouse transcriptome based on functional annotation of 60 770 full-length cDNAs. Nature 420, 563–573.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Okazaki, N. , Kikuno, R. , Ohara, R. , Inamoto, S. , Hara, Y. , Nagase, T. , Ohara, O. , and Koga, H. (2002b). Prediction of the coding sequences of mouse homologues of KIAA gene: I. The complete nucleotide sequences of 100 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries. DNA Res. 9, 179–188.
PubMed |

Pease, A. C. , Solas, D. , Sullivan, E. J. , Cronin, M. T. , Holmes, C. P. , and Fodor, S. P. (1994). Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl Acad. Sci. USA 91, 5022–5026.
PubMed |

Pertea, G. , Huang, X. , Liang, F. , Antonescu, V. , and Sultana, R. , et al. (2003). TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19, 651–652.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ponsuksili, S. , Tesfaye, D. , El-Halawany, N. , Schellander, K. , and Wimmers, K. (2002). Stage-specific expressed sequence tags obtained during pre-implantation bovine development by differential display RT-PCR and suppression subtractive hybridization. Prenat. Diagn. 22, 1135–1142.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reinke, V. , and White, K. P. (2002). Developmental genomic approaches in model organisms. Annu. Rev. Genomics Hum. Genet. 3, 153–178.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rothstein, J. L. , Johnson, D. , DeLoia, J. A. , Skowronski, J. , Solter, D. , and Knowles, B. (1992). Gene expression during pre-implantation mouse development. Genes Dev. 6, 1190–1201.
PubMed |

Sasaki, N. , Nagaoka, S. , Itoh, M. , Izawa, M. , and Konno, H. , et al. (1998). Characterization of gene expression in mouse blastocyst using single-pass sequencing of 3995 clones. Genomics 49, 167–179.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schena, M. , Shalon, D. , Davis, R. W. , and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.
PubMed |

Schlessinger, D. , and Ko, M. S. H. (1998). Developmental genomics and its relation to aging. Genomics 52, 113–118.
Crossref | GoogleScholarGoogle Scholar |

Smith, T. P. , Fahrenkrug, S. C. , Rohrer, G. A. , Simmen, F. A. , Rexroad, C. E. , and Keele, J. W. (2001). Mapping of expressed sequence tags from a porcine early embryonic cDNA library. Anim. Genet. 32, 66–72.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Solter, D., de Vries, W. N., Evsikov, A. V., Peaston, A. E., Chen, F. H. and  Knowles, B. B. (2002). Fertilization and activation of the embryonic genome In ‘Mouse Development: Patterning, Morphogenesis, and Organogenesis’. (Eds. J Rossant and P P. L. Tam)  pp. 5–19. (Academic Press: San Diego, CA.)

Stanton, J. L. , and Green, D. P. (2001). Meta-analysis of gene expression in mouse pre-implantation embryo development. Mol. Hum. Reprod. 7, 545–552.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stanton, J. L. , Macgregor, A. B. , and Green, D. P. (2002). Using expressed sequence tag databases to identify ovarian genes of interest. Mol. Cell. Endocrinol. 191, 11–14.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stein, P. , Svoboda, P. , and Schultz, R. M. (2003). Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev. Biol. 256, 187–193.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Strausberg, R. L. , Feingold, E. A. , Grouse, L. H. , Derge, J. G. , and Klausner, R. D. , et al. (2002). Generation and initial analysis of more than 15 000 full-length human and mouse cDNA sequences. Proc. Natl Acad. Sci. USA 99, 16899–16903.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Suzuki, Y. , Yamashita, R. , Nakai, K. , and Sugano, S. (2002). DBTSS: DataBase of human Transcriptional Start Sites and full-length cDNAs. Nucleic Acids Res. 30, 328–331.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takahashi, N. , and Ko, M. S. H. (1994). Toward a whole cDNA catalog: construction of an equalized cDNA library from mouse embryos. Genomics 23, 202–210.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tanaka, T. S. , Jaradat, S. A. , Lim, M. K. , Kargul, G. J. , and Wang, X. , et al. (2000). Genome-wide expression profiling of mid-gestation placenta and embryo using a 15 000 mouse developmental cDNA microarray. Proc. Natl Acad. Sci. USA 97, 9127–9132.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thompson, E. M. , Legouy, E. , and Renard, J. P. (1998). Mouse embryos do not wait for the MBT: chromatin and RNA polymerase remodeling in genome activation at the onset of development. Dev. Genet. 22, 31–42.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tuggle, C. K. , Green, J. A. , Fitzsimmons, C. , Woods, R. , and Prather, R. S. , et al. (2003). EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human. Mamm. Genome 14, 565–579.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Blerkom, J. (1981). Structural relationship and posttranslational modification of stage-specific proteins synthesized during early pre-implantation development in the mouse. Proc. Natl Acad. Sci. USA 78, 7629–7633.
PubMed |

VanBuren, V. , Piao, Y. , Dudekula, D. B. , Qian, Y. , and Carter, M. G. , et al. (2002). Assembly, verification, and initial annotation of the NIA mouse 7.4K cDNA clone set. Genome Res. 12, 1999–2003.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Velculescu, V. E. , Vogelstein, B. , and Kinzler, K. W. (2000). Analysing uncharted transcriptomes with SAGE. Trends Genet. 16, 423–425.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Venter, J. C. , Adams, M. D. , Myers, E. W. , Li, P. W. , and Mural, R. J. , et al. (2001). The sequence of the human genome. Science 291, 1304–1351.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wassarman, P. M. , Jovine, L. , and Litscher, E. S. (2001). A profile of fertilization in mammals. Nat. Cell Biol. 3, E59–E64.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Waterston, R. H. , Lindblad-Toh, K. , Birney, E. , Rogers, J. , and Abril, J. F. , et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Watson, A. J., Hogan, A., Hahnel, A. and  Schultz, G. A. (1993). Activation of the embryonic genome: comparison between mouse and bovine development In ‘Preimplantation Embryo Development’.  pp. 115–129. (Springer-Verlag: New York.)

Wianny, F. , and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yanagimachi, R. (2002). Cloning: experience from the mouse and other animals. Mol. Cell. Endocrinol. 187, 241–248.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zeng, F. , and Schultz, R. M. (2003). Gene expression in mouse oocytes and pre-implantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol. Reprod. 68, 31–39.
PubMed |

Zernicka-Goetz, M. (2002). Patterning of the embryo: the first spatial decisions in the life of a mouse. Development 129, 815–829.
PubMed |