Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Preconceptional omega-3 fatty acid supplementation on a micronutrient-deficient diet improves the reproductive cycle in Wistar rats

Akshaya P. Meher A , Asmita A. Joshi A and Sadhana R. Joshi A B
+ Author Affiliations
- Author Affiliations

A Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune 411043, India.

B Corresponding author. Email: srjoshi62@gmail.com

Reproduction, Fertility and Development 25(7) 1085-1094 https://doi.org/10.1071/RD12210
Submitted: 25 June 2012  Accepted: 4 October 2012   Published: 9 November 2012

Abstract

Folic acid and vitamin B12 deficiencies are associated with high reproductive risks ranging from infertility to fetal structural defects. The aim of the present study was to examine the effects of preconceptional omega-3 fatty acid supplementation (eicosapentaenoic acid and docosahexaenoic acid) to a micronutrient-deficient diet on the reproductive cycle in Wistar rats. Female rats were divided into five groups from birth and throughout pregnancy: a control group, a folic acid-deficient (FD) group, a vitamin B12-deficient (BD) group, a folic acid-deficient + omega-3 fatty acid-supplemented (FDO) group and a vitamin B12 deficient + omega-3 fatty acid-supplemented (BDO) group. Dams were killed on gestation Day 20 and their ovaries and mammary glands were dissected out and subjected to histological examination. Maternal micronutrient deficiency (FD and BD groups) resulted in an abnormal oestrous cycle (P < 0.001), whereas omega-3 fatty acid supplementation (FDO and BDO groups) restored the oestrous cycle to normal. There were fewer corpora lutea in the ovaries of FD rats compared with controls. In addition, rats in both the FD and BD groups exhibited an absence of lactating ducts in their mammary glands compared with controls. The findings of the present study indicate, for the first time, that maternal micronutrient deficiency affects the oestrous cycle and morphology of the ovary and mammary glands. Omega-3 fatty acid supplementation ameliorated these effects. This may have implications for infertility and pregnancy outcomes.

Additional keywords : folic acid, oestrous cycle, vitamin B12.


References

Agnish, N., and Keller, K. (1997). The rationale for culling of rodent litters. Fundam. Appl. Toxicol. 38, 2–6.
The rationale for culling of rodent litters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Gmu7Y%3D&md5=af86396d9ae60eb4daf0c1cef7d0cf31CAS | 9268601PubMed |

Anbazhagan, R., Bartek, J., Monaghan, P., and Gusterson, B. (1991). Growth and development of human infant breast. Am. J. Anat. 192, 407–417.
Growth and development of human infant breast.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387ktlSqsw%3D%3D&md5=4f7f15650b3399c0d95e16c4422e9d87CAS | 1781450PubMed |

Ashworth, C. J., Toma, L., and Hunter, M. (2009). Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3351–3361.
Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability.Crossref | GoogleScholarGoogle Scholar | 19833647PubMed |

Bennett, M. (2001). Vitamin B12 deficiency, infertility and recurrent fetal loss. J. Reprod. Med. 46, 209–212.
| 1:CAS:528:DC%2BD3MXjtVOhur0%3D&md5=1d716db06a8b6f2b1a1a0199e8f37e59CAS | 11304860PubMed |

Berker, B., Kaya, C., Aytac, R., and Satiroglu, H. (2009). Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction. Hum. Reprod. 24, 2293–2302.
Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtValsbnI&md5=2cfbfca5ddd6b0156148783a2d514ce3CAS | 19443458PubMed |

Brisken, C., and O’Maley, B. (2010). Hormone action in the mammary gland. Cold Spring Harb. Perspect. Biol. 2, a003178.
Hormone action in the mammary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKqtL0%3D&md5=08e0b0f539ae8e88782b72eb9d81ce64CAS | 20739412PubMed |

Burke, J., Carroll, D., Rowe, K., Thatcher, W., and Stormshak, F. (1996). Intravascular infusion of lipid into ewes stimulates production of progesterone and prostaglandin. Biol. Reprod. 55, 169–175.
Intravascular infusion of lipid into ewes stimulates production of progesterone and prostaglandin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlKnsbY%3D&md5=78394a169a9c4476678c832c6c7431c1CAS | 8793072PubMed |

Cavalieri, J., Hepworth, G., and Fitzpatrick, L. A. (2005). Synchronising oestrus with oestradiol benzoate after using a two-dose prostaglandin treatment to synchronise luteolysis in dairy heifers. Aust. Vet. J. 83, 91–96.
Synchronising oestrus with oestradiol benzoate after using a two-dose prostaglandin treatment to synchronise luteolysis in dairy heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Wgsbo%3D&md5=e33f8e806fb7bde003b923a92bb7304fCAS | 15971828PubMed |

Cetin, I., Berti, C., and Calabrese, S. (2010). Role of micronutrients in the periconceptional period. Hum. Reprod. Update 16, 80–95.
Role of micronutrients in the periconceptional period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOht7rK&md5=586c3b3f72270e2ec805d14d0cdd23edCAS | 19567449PubMed |

Channing, C., Hillensjo, T., and Schaerf, F. (1978). Hormonal control of oocyte meiosis, ovulation and luteinization in mammals. Clin. Endocrinol. Metab. 7, 601–624.
Hormonal control of oocyte meiosis, ovulation and luteinization in mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M%2FosVKntA%3D%3D&md5=333d94a25944c2a13c7f67b8417de8daCAS | 215357PubMed |

Crawford, M. A. (2000). Commentary on the workshop statement. Essentiality of and recommended dietary intakes for omega-3 and omega-6 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 63, 131–134.
Commentary on the workshop statement. Essentiality of and recommended dietary intakes for omega-3 and omega-6 fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslCrtbo%3D&md5=c0072caeff590292ff4611a851eba720CAS | 10991768PubMed |

Dangat, K., Kale, A., and Joshi, S. (2011). Maternal supplementation of omega 3 fatty acids to micronutrient-imbalanced diet improves lactation in rat. Metabolism 60, 1318–1324.
Maternal supplementation of omega 3 fatty acids to micronutrient-imbalanced diet improves lactation in rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVaitLvN&md5=2b401c8fc6f8104be4ade19f08c57de8CAS | 21489576PubMed |

de Weerd, S., Steegers, E., Heinen, M. M., van den Eertwegh, S., Vehof, R., and Steegers-Theunissen, R. (2003). Preconception nutritional intake and lifestyle factors: first results of an explorative study. Eur. J. Obstet. Gynecol. Reprod. Biol. 111, 167–172.
Preconception nutritional intake and lifestyle factors: first results of an explorative study.Crossref | GoogleScholarGoogle Scholar | 14597246PubMed |

Dhobale, M., Chavan, P., Kulkarni, A., Mehendale, S., Pisal, H., and Joshi, S. (2012). Reduced folate, increased vitamin B12 and homocysteine concentrations in women delivering preterm. Ann. Nutr. Metab. 61, 7–14.
Reduced folate, increased vitamin B12 and homocysteine concentrations in women delivering preterm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aqs7bM&md5=ea7c916de8e680702336a42c8c348127CAS | 22776827PubMed |

Dos Santos, Z. A., Da Silva, R. J., Bacurau, R. F. P., Terapegui, J., and Ribeiro, S. M. L. (2011). Effect of food restriction and intense physical training on estrous cyclicity and plasma leptin concentrations in rat. J. Nutr. Sci. Vitaminol. 57, 1–8.
Effect of food restriction and intense physical training on estrous cyclicity and plasma leptin concentrations in rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1aisrk%3D&md5=dd12976b294c352b68b9db7b14581623CAS | 21512284PubMed |

Ebisch, I., Thomas, C., Peters, W., Braat, D., and Steegers-Theunissen, R. (2007). The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum. Reprod. Update 13, 163–174.
The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFWlsrs%3D&md5=1173a63623f7dbdf053d75fb59c3fed8CAS | 17099205PubMed |

Fritsche, K., and Johnston, P. (1988). Rapid autoxidation of fish oil in diets without added antioxidants. J. Nutr. 118, 425–426.
| 1:CAS:528:DyaL1cXktlKrsL4%3D&md5=6a299c9bf850d004c74f97fb87afdedbCAS | 3357057PubMed |

Gonzalez, M., Gray, J., Schemmel, R., Dugan, L., and Welsch, C. (1992). Lipid peroxidation products are elevated in fish oil diets even in the presence of added antioxidants. J. Nutr. 122, 2190–2195.
| 1:CAS:528:DyaK3sXmtFWq&md5=b9661011ce7ed7713c1853e646430f74CAS | 1432259PubMed |

Guilbert, H., and Goss, H. (1932). Some effects of restricted protein intake on the estrous cycle and gestation in rats. J. Nutr. 5, 251–265.
| 1:CAS:528:DyaA38XlsVGjtg%3D%3D&md5=42f4474f894fbe4f96807c8bdaf329bdCAS |

Kale, A., Naphade, N., Sapkale, S., Kamaraju, M., Pillai, A., Joshi, S., and Mahadik, S. (2010). Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res. 175, 47–53.
Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyktrbN&md5=ca6a4b4ee5f8c5e5e950ae66ac226733CAS | 19969375PubMed |

Kechrid, Z., Amamra, S., and Bouzerna, R. (2006). The effect of zinc deficiency on zinc status, carbohydrate metabolism and progesterone level in pregnant rats. Turk. J. Med. Sci. 36, 337–342.
| 1:CAS:528:DC%2BD2sXisFyks70%3D&md5=8c5113c762ee6ba29317fab0bd1a5a5eCAS |

Kilari, A., Mehendale, S., Dangat, K., Yadav, H., Kulakarni, A., Dhobale, M., Taralekar, V., and Joshi, S. (2009). Long chain polyunsaturated fatty acids in mothers and term babies. J. Perinat. Med. 37, 513–518.
Long chain polyunsaturated fatty acids in mothers and term babies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWitb%2FO&md5=6228ec58d4a055338e63525de81befd6CAS | 19492914PubMed |

Kilari, A., Mehendale, S., Dangat, K., Yadav, H., Gupta, A., Taralekar, V., and Joshi, S. (2010). Long chain polyunsaturated fatty acids in mothers of preterm babies. J. Perinat. Med. 38, 659–664.
Long chain polyunsaturated fatty acids in mothers of preterm babies.Crossref | GoogleScholarGoogle Scholar | 20807011PubMed |

Kilari, A., Mehendale, S., Dangat, K., Pisal, H., and Joshi, S. (2011). Associations of long-chain polyunsaturated fatty acid concentrations with birth outcome in term Indian mothers and their neonates. Am. J. Hum. Biol. 23, 319–324.
Associations of long-chain polyunsaturated fatty acid concentrations with birth outcome in term Indian mothers and their neonates.Crossref | GoogleScholarGoogle Scholar | 21484911PubMed |

Kulkarni, A., Mehendale, S., Pisal, H., Kilari, A., Dangat, K., Salunkhe, S., Taralekar, V., and Joshi, S. (2011a). Association of omega-3 fatty acids and homocysteine concentrations in pre-eclampsia. Clin. Nutr. 30, 60–64.
Association of omega-3 fatty acids and homocysteine concentrations in pre-eclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslKqu70%3D&md5=31c09a161874b38ad48b66fa726138beCAS | 20719412PubMed |

Kulkarni, A., Dangat, K., Kale, A., Sable, P., Chavan-Gautam, P., and Joshi, S. (2011b). Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One 6, e17706.
Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslKlsrw%3D&md5=8523c378ec4f4cd4cd4cb77da373480fCAS | 21423696PubMed |

Long, J., and Evans, H. (1922). The estrous cycle in the rat and its associated phenomena. Mem. Univ. Calif. 6, 1–148.

Marcondes, F., Bianchi, F., and Tanno, A. (2002). Determination of the estrous cycle phases of rat: some helpful considerations. Braz. J. Biol. 62, 609–614.
Determination of the estrous cycle phases of rat: some helpful considerations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7ksValsA%3D%3D&md5=3de03ced0300268a9a5bb098f94a2363CAS | 12659010PubMed |

Mehendale, S., Kilari, A., Dangat, K., Taralekar, V., Mahadik, S., and Joshi, S. (2008). Fatty acids, antioxidants, and oxidative stress in pre-eclampsia. Int. J. Gynaecol. Obstet. 100, 234–238.
Fatty acids, antioxidants, and oxidative stress in pre-eclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlemur4%3D&md5=3ebbbb618c97289280c96e38df4a4ca4CAS | 17977540PubMed |

Mehendale, S., Kilari, A., Deshmukh, C., Dhorepatil, B., Nimbargi, V., and Joshi, S. (2009). Oxidative stress mediated essential polyunsaturated fatty acid alterations in female infertility. Hum. Fertil. 12, 28–33.
Oxidative stress mediated essential polyunsaturated fatty acid alterations in female infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKrsbY%3D&md5=2b99346710c4389c7459608720c0b273CAS |

Mohanty, D., and Das, K. C. (1982). Effect of folate deficiency on the reproductive organs of female rhesus monkeys: a cytomorphological and cytokinetic study. J. Nutr. 112, 1565–1576.
| 1:CAS:528:DyaL38Xlt1Kju7w%3D&md5=3ddf3a643dfbaca7b753f52deddfe916CAS | 7097366PubMed |

Mouratidou, T., Ford, F., Prountzou, F., and Fraser, R. (2006). Dietary assessment of a population of pregnant women in Sheffield, UK. Br. J. Nutr. 96, 929–935.
Dietary assessment of a population of pregnant women in Sheffield, UK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ylt7fN&md5=bd0930f5c954b54d0109ff74d48cfbc8CAS | 17092384PubMed |

Nah, W., Park, M., and Gye, M. (2011). Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin. Exp. Reprod. Med. 38, 75–81.
Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice.Crossref | GoogleScholarGoogle Scholar | 22384422PubMed |

Oluyemi, K., Okwuonu, U., Grillo, B., and Oyesola, T. (2007). Toxic effects of methanolic extract of Aspilia africana leaf on the estrous cycle and uterine tissues of Wistar rats. Int. J. Morphol. 25, 609–614.
Toxic effects of methanolic extract of Aspilia africana leaf on the estrous cycle and uterine tissues of Wistar rats.Crossref | GoogleScholarGoogle Scholar |

Pita, M. L., and Delgado, M. J. (2000). Folate administration increases N-3 polyunsaturated fatty acids in rat plasma and tissue lipids. Thromb. Haemost. 84, 420–423.
| 1:CAS:528:DC%2BD3MXjtVOksLk%3D&md5=793a2981ee0453ba4c1dacee944d53a7CAS | 11019965PubMed |

Prall, O., Rogan, E., and Sutherland, R. (1998). Estrogen regulation of cell cycle progression in breast cancer cells. J. Steroid. Biochem. Mol. Biol. 65, 169–174.
Estrogen regulation of cell cycle progression in breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVKru7Y%3D&md5=18399354962fe62f12fda6fc83aa552fCAS | 9699870PubMed |

Rao, S., Joshi, S., Kale, A., Hegde, M., and Mahadik, S. (2006). Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring. Metabolism 55, 628–634.
Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGmurg%3D&md5=e35e305e5a9a71720f7f79b081f5bb49CAS | 16631439PubMed |

Reeves, P., Nielsen, F., and Fahey, G. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951.
| 1:CAS:528:DyaK2cXltlegsw%3D%3D&md5=24443117e35b62197a467d282d14669bCAS | 8229312PubMed |

Reznikoff-Etiévant, M., Zittoun, J., Vaylet, C., Pernet, P., and Milliez, J. (2002). Low vitamin B12 level as a risk factor for very early recurrent abortion. Eur. J. Obstet. Gynecol. Reprod. Biol. 104, 156–159.
Low vitamin B12 level as a risk factor for very early recurrent abortion.Crossref | GoogleScholarGoogle Scholar | 12206930PubMed |

Ronnenberg, A., Venners, S., Xu, X., Chen, C., Wang, L., Guang, W., Huang, A., and Wang, X. (2007). Preconception B-vitamin and homocysteine status, conception, and early pregnancy loss. Am. J. Epidemiol. 166, 304–312.
Preconception B-vitamin and homocysteine status, conception, and early pregnancy loss.Crossref | GoogleScholarGoogle Scholar | 17478435PubMed |

Roy, S., Kale, A., Dangat, K., Sable, P., Kulkarni, A., and Joshi, S. (2012). Maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids: implications for neurodevelopmental risk in the rat offspring. Brain Dev. 34, 64–71.
Maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids: implications for neurodevelopmental risk in the rat offspring.Crossref | GoogleScholarGoogle Scholar | 21300490PubMed |

Sable, P., Dangat, K., Joshi, A., and Joshi, S. (2012). Maternal omega 3 fatty acid supplementation during pregnancy to a micronutrient imbalanced diet protects postnatal reduction of brain neurotrophins in the rat offspring. Neuroscience 217, 46–55.
Maternal omega 3 fatty acid supplementation during pregnancy to a micronutrient imbalanced diet protects postnatal reduction of brain neurotrophins in the rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGmt7Y%3D&md5=6554fb7f76a2d2cb26cd87f6e9661150CAS | 22579981PubMed |

Sales, K., and Jabbour, H. (2003). Cyclooxygenase enzymes and prostaglandins in pathology of the endometrium. Reproduction 126, 559–567.
Cyclooxygenase enzymes and prostaglandins in pathology of the endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslai&md5=c63f99dc4fc94b43f783674def3b8f5cCAS | 14611628PubMed |

Staples, C., Burke, J., and Thatcher, W. (1998). Influence of supplemental fats on reproductive tissues and performance of lactating cows. J. Dairy Sci. 81, 856–871.
Influence of supplemental fats on reproductive tissues and performance of lactating cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlyht7c%3D&md5=195b48281fa0e804a2df26b8d0d9caddCAS | 9565891PubMed |

Stocco, C., Telleria, C., and Gibori, G. (2007). The molecular control of corpus luteum formation, function, and regression. Endocr. Rev. 28, 117–149.
The molecular control of corpus luteum formation, function, and regression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFCgsrc%3D&md5=8e1a123bdd1c6e80e7ec5a5b70f7fcd9CAS | 17077191PubMed |

Teede, H., Deeks, A., and Moran, L. (2010). Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 8, 41.
Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjgtFGntA%3D%3D&md5=8ec764ccb2816e6fd321190cbb6ac045CAS | 20591140PubMed |

Tropp, J., and Markus, E. (2001). Effects of mild food deprivation on the estrous cycle of rats. Physiol. Behav. 73, 553–559.
Effects of mild food deprivation on the estrous cycle of rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslGmsr4%3D&md5=e775c3f32e655c35bdb079f2db9e6c27CAS | 11495659PubMed |

Umhau, J., Dauphinais, K., Patel, S., Nahrwold, D., Hibbeln, J., and George, D. (2006). The relationship between folate and docosahexaenoic acid in men. Eur. J. Clin. Nutr. 60, 352–357.
The relationship between folate and docosahexaenoic acid in men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVKhsbo%3D&md5=18cdfbe7fbe897b13f2a0dfd12838fa4CAS | 16278690PubMed |

Wadhwani, N., Manglekar, R., Dangat, K., Kulkarni, A., and Joshi, S. (2012). Effect of maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids on liver fatty acid desaturases and transport proteins in Wistar rats. Prostaglandins Leukot. Essent. Fatty Acids 86, 21–27.
Effect of maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids on liver fatty acid desaturases and transport proteins in Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yrsr%2FN&md5=db9863d2fd93ad6ecd1fddc441e05b71CAS | 22133376PubMed |

White, N., Burns, P., Cheatham, R., Romero, R., Nozykowski, J., Bruemmer, J., and Engle, T. E. (2012). Fish meal supplementation increases bovine plasma and luteal tissue omega-3 fatty acid composition. J. Anim. Sci. 90, 771–778.
Fish meal supplementation increases bovine plasma and luteal tissue omega-3 fatty acid composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFSitbo%3D&md5=0fc47f5ec2155248d2c8f1743b3c1b2cCAS | 22003234PubMed |