Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Claudin-8 expression in Sertoli cells and putative spermatogonial stem cells in the bovine testis

Mary McMillan A B D , Nicholas Andronicos B , Rhonda Davey A B , Sally Stockwell A C , Geoff Hinch D and Sabine Schmoelzl A B D E
+ Author Affiliations
- Author Affiliations

A CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia.

B CSIRO Animal, Food and Health Sciences, F. D. McMaster Laboratory, Armidale, NSW 2350, Australia.

C CSIRO Animal, Food and Health Sciences, Queensland Bioscience Precinct, St Lucia, Qld 4067, Australia.

D School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.

E Corresponding author. Email: sabine.schmoelzl@csiro.au

Reproduction, Fertility and Development 26(5) 633-644 https://doi.org/10.1071/RD12259
Submitted: 8 August 2012  Accepted: 16 April 2013   Published: 15 May 2013

Abstract

Adhesion molecules are expressed by both adult and embryonic stem cells, with different classes of adhesion molecules involved in cell-membrane and intercellular contacts. In this study the expression of the adhesion molecule claudin-8 (CLDN8), a tight-junction protein, was investigated as a potential marker for undifferentiated spermatogonia in the bovine testis. We found that CLDN8 was expressed by both spermatogonia and a subset of Sertoli cells in the bovine testis. We also showed co-expression of GFRα1 in testis cells with CLDN8 and with Dolichos biflorus agglutinin–fluorescein isothiocyanate (DBA–FITC) staining. We observed co-enrichment of spermatogonia and CLDN8-expressing Sertoli cells in DBA–FITC-assisted magnetic-activated cell sorting (MACS), an observation supported by results from fluorescence-activated cell sorting analysis, which showed CLDN8-expressing cells were over-represented in the MACS-positive cell fraction, leading to the hypothesis that CLDN8 may play a role in the spermatogonial stem-cell niche.

Additional keywords: adhesion molecule, stem-cell niche, tight junction.


References

Amasheh, S., Milatz, S., Krug, S., Markov, A., Günzel, D., Amasheh, M., and Fromm, M. (2009). Tight junction proteins as channel formers and barrier builders. Ann. N. Y. Acad. Sci. 1165, 211–219.
Tight junction proteins as channel formers and barrier builders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1Ghu7k%3D&md5=3631da3b2d1d632d33debd1ce66be218CAS | 19538309PubMed |

Angelow, S., Schneeberger, E., and Yu, A. (2007). Claudin-8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin-2. J. Membr. Biol. 215, 147–159.
Claudin-8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin-2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1CjtLk%3D&md5=89e71aa2b3e01bc7add9acebef083909CAS | 17516019PubMed |

Brinster, R. L., and Nagano, M. (1998). Spermatogonial stem-cell transplantation, cryopreservation and culture. Semin. Cell Dev. Biol. 9, 401–409.
Spermatogonial stem-cell transplantation, cryopreservation and culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3oslSluw%3D%3D&md5=4fe01785e7e05f5fc5c5648d16b01d88CAS | 10366284PubMed |

Brinster, R. L., and Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA 91, 11 298–11 302.
Spermatogenesis following male germ-cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlyku7s%3D&md5=5ff1f07171f2767f5992899a44cc1003CAS |

Buaas, F. W., Kirsh, A. L., Sharma, M., McLean, D. J., Morris, J. L., Griswold, M. D., de Rooij, D. G., and Braun, R. E. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nat. Genet. 36, 647–652.
Plzf is required in adult male germ cells for stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVajt7c%3D&md5=14e0fc9fcb0fe2bef99f651a64fdf25bCAS | 15156142PubMed |

Conrad, S., Renninger, M., Hennenlotter, J., Wiesner, T., Just, L., Bonin, M., Aicher, W., Buhring, H. J., Mattheus, U., Mack, A., Wagner, H. J., Minger, S., Matzkies, M., Reppel, M., Hescheler, J., Sievert, K. D., Stenzl, A., and Skutella, T. (2008). Generation of pluripotent stem cells from adult human testis. Nature 456, 344–349.
Generation of pluripotent stem cells from adult human testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSjsLjI&md5=12c106a585d25491908643b9e23db3adCAS | 18849962PubMed |

De Rooij, D. G. (2009). The spermatogonial stem-cell niche. Microsc. Res. Tech. 72, 580–585.
The spermatogonial stem-cell niche.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOnurvE&md5=86534bd82ae98ac95a413c3a956822c5CAS | 19263493PubMed |

Dettin, L., Ravindranath, N., Hofmann, M.-C., and Dym, M. (2003). Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis. Biol. Reprod. 69, 1565–1571.
Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosV2ku7o%3D&md5=9981a756efecffbe6b179a9e3c3fa269CAS | 12855601PubMed |

Dubé, E., Chan, P., Hermo, L., and Cyr, D. (2007). Gene expression profiling and its relevance to the blood–epididymal barrier in the human epididymis. Biol. Reprod. 76, 1034–1044.
Gene expression profiling and its relevance to the blood–epididymal barrier in the human epididymis.Crossref | GoogleScholarGoogle Scholar | 17287494PubMed |

Ellis, S. J., and Tanentzapf, G. (2010). Integrin-mediated adhesion and stem-cell niche interactions. Cell Tissue Res. 339, 121–130.
Integrin-mediated adhesion and stem-cell niche interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymtrfF&md5=40ccfa1139c50ea947f868b60aa3abccCAS | 19588168PubMed |

Ertl, C., and Wrobel, K. (1992). Distribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectin–horseradish peroxidase conjugates. Histochemistry 97, 161–171.
Distribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectin–horseradish peroxidase conjugates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsVyqtro%3D&md5=e75b15410756fa2ed4562065937611f4CAS | 1559848PubMed |

Gow, A., Southwood, C., Li, J., Pariali, M., Riordan, G., Brodie, S., Danias, J., Bronstein, J., Kachar, B., and Lazzarini, R. (1999). CNS myelin and sertoli cell tight junction strands are absent in Osp/Claudin-11 null mice. Cell 99, 649–659.
CNS myelin and sertoli cell tight junction strands are absent in Osp/Claudin-11 null mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVKk&md5=54cb66f759974c3d92a1decd80d1936eCAS | 10612400PubMed |

Gregory, M., and Cyr, D. (2006). Identification of multiple claudins in the rat epididymis. Mol. Reprod. Dev. 73, 580–588.
Identification of multiple claudins in the rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1KitL8%3D&md5=775e957f876fdff2077adf1738b2d0a8CAS | 16489631PubMed |

Gregory, M., Dufresne, J., Hermo, L., and Cyr, D. (2001). Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology 142, 854–863.
Claudin-1 is not restricted to tight junctions in the rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFSrtbo%3D&md5=cb0e01f20c511c558e938a00b26810c9CAS | 11159859PubMed |

Gye, M. C. (2003). Expression of claudin-1 in mouse testis. Arch. Androl. 49, 271–279.
| 1:CAS:528:DC%2BD3sXlt1Cqtr8%3D&md5=98fd18d684e1be1c510de0ee53bf15f4CAS | 12851029PubMed |

He, Z., Kokkinaki, M., Jiang, J., Dobrinski, I., and Dym, M. (2010). Isolation, characterization and culture of human spermatogonia. Biol. Reprod. 82, 363–372.
Isolation, characterization and culture of human spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSnsb8%3D&md5=00871848fd743aaca590f3a37b49ec82CAS | 19846602PubMed |

Herrid, M., Vignarajan, S., Davey, R., Dobrinski, I., and Hill, J. (2006). Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132, 617–624.
Successful transplantation of bovine testicular cells to heterologous recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ahs7rP&md5=68d0f0174952f5fe7186c989281dc674CAS | 17008473PubMed |

Herrid, M., Davey, R., and Hill, J. (2007). Characterization of germ cells from pre-pubertal bull calves in preparation for germ-cell transplantation. Cell Tissue Res. 330, 321–329.
Characterization of germ cells from pre-pubertal bull calves in preparation for germ-cell transplantation.Crossref | GoogleScholarGoogle Scholar | 17593396PubMed |

Herrid, M., Davey, R., Hutton, K., Colditz, I., and Hill, J. (2009). A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod. Fertil. Dev. 21, 393–399.
A comparison of methods for preparing enriched populations of bovine spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFemtr8%3D&md5=8f7f4201e970f113faafc394537ee3ddCAS | 19261216PubMed |

Hill, J. R., and Dobrinski, I. (2006). Male germ-cell transplantation in livestock. Reprod. Fertil. Dev. 18, 13–18.
Male germ-cell transplantation in livestock.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28%2FptlWmsg%3D%3D&md5=9739e2a33f0bf498fb0271e6e2d61e59CAS | 16478598PubMed |

Honaramooz, A., Snedaker, A., Boiani, M., Scholer, H., Dobrinski, I., and Schlatt, S. (2002). Germ-cell transplantation in pig. Biol. Reprod. 66, 21–28.
Germ-cell transplantation in pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ylsg%3D%3D&md5=2d37a5b28a5842ee084720358f2d4a06CAS | 11751259PubMed |

Honaramooz, A., Behboodi, E., Blash, S., Megee, S., and Dobrinski, I. (2003). Germ-cell transplantation in goats. Mol. Reprod. Dev. 64, 422–428.
Germ-cell transplantation in goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislOqsr0%3D&md5=efff1df9fe78596f3ac5b22ef8a20931CAS | 12589654PubMed |

Izadyar, F., Spierenberg, G., Creemers, L., den Ouden, K., and de Rooij, D. (2002). Isolation and purification of Type A spermatogonia from the bovine testis. Reproduction 124, 85–94.
Isolation and purification of Type A spermatogonia from the bovine testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFaksL8%3D&md5=9970823eefe8a9dc3e9a45524bbfc122CAS | 12090922PubMed |

Izadyar, F., Den Ouden, K., Stout, T., Stout, J., Coret, J., Lankveld, D., Spoormakers, T., Colenbrander, B., Oldenbroek, J., and Van der Ploeg, K. (2003). Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126, 765–774.
Autologous and homologous transplantation of bovine spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFWktw%3D%3D&md5=47f5995ed3b0fcbaed7fe421ce8b0401CAS | 14748695PubMed |

Jahnukainen, K., Ehmcke, J., Hou, M., and Schlatt, S. (2011). Testicular function and fertility preservation in male cancer patients. Best Pract. Res. Clin. Endocrinol. Metab. 25, 287–302.
Testicular function and fertility preservation in male cancer patients.Crossref | GoogleScholarGoogle Scholar | 21397199PubMed |

Jiménez-Severiano, H., Mussard, M. L., Fitzpatrick, L. A., D’Occhio, M. J., Ford, J. J., Lunstra, D. D., and Kinder, J. E. (2005). Testicular development of Zebu bulls after chronic treatment with a gonadotrophin-releasing hormone agonist. J. Anim. Sci. 83, 2111–2122.
| 16100066PubMed |

Kanatsu-Shinohara, M., Takehashi, M., Takashima, S., Lee, J., Morimoto, H., Chuma, S., Raducanu, A., Nakatsuji, N., Fassler, R., and Shinohara, T. (2008). Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell 3, 533–542.
Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaqs7%2FO&md5=27828157885cc47a179c5acc24839e78CAS | 18983968PubMed |

Ketola, I., Rahman, N., Toppari, J., Bielinska, M., Porter-Tinge, S. B., Tapanainen, J. S., Huhtaniemi, I. T., Wilson, D. B., and Heikinheimo, M. (1999). Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology 140, 1470–1480.
Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFCisrs%3D&md5=5497937b0e8d90c63000fa5d795ae019CAS | 10067876PubMed |

Kiuchi-Saishin, Y., Gotoh, S., Furuse, M., Takasuga, A., Tano, Y., and Tsukita, S. (2002). Differential expression patterns of claudins, tight-junction membrane proteins, in mouse nephron segments. J. Am. Soc. Nephrol. 13, 875–886.
| 1:CAS:528:DC%2BD38XjtFSnsb0%3D&md5=a37b59fadcdaa82acf724afa4d60f5f2CAS | 11912246PubMed |

Koval, M. (2006). Claudins: key pieces in the tight-junction puzzle. Cell Commun. Adhes. 13, 127–138.
Claudins: key pieces in the tight-junction puzzle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFKht7s%3D&md5=b0e73d5ec97c723bd15ccd812b95e96cCAS | 16798613PubMed |

Kubota, K., Furuse, M., Sasaki, H., Sonoda, N., Fujita, K., Nagafuchi, A., and Tsukita, S. (1999). Ca2+-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. Curr. Biol. 9, 1035–1038.
Ca2+-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlags7Y%3D&md5=b1af94dc3b5baaf94d8cd4c16ec2eab3CAS | 10508613PubMed |

Luo, J., Megee, S., and Dobrinski, I. (2009). Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J. Cell. Physiol. 220, 460–468.
Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFags7c%3D&md5=982da295520d4efa784d405828772210CAS | 19388011PubMed |

Marthiens, V., Kazanis, I., Moss, L., Long, K., and ffrench-Constant, C. (2010). Adhesion molecules in the stem-cell niche – more than just staying in shape? J. Cell Sci. 123, 1613–1622.
Adhesion molecules in the stem-cell niche – more than just staying in shape?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFGrsL0%3D&md5=8291bc53424b105bb4fa23bbba05cfdbCAS | 20445012PubMed |

McCoard, S. A., Wise, T. H., Fahrenkrug, S. C., and Ford, J. J. (2001). Temporal and spatial localization patterns of Gata4 during porcine gonadogenesis. Biol. Reprod. 65, 366–374.
Temporal and spatial localization patterns of Gata4 during porcine gonadogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1WgurY%3D&md5=b9efef102274099753442d173a176570CAS | 11466202PubMed |

Meng, X., Lindahl, M., Hyvonen, M. E., Parvinen, M., de Rooij, D. G., Hess, M. W., Raatikainen-Ahokas, A., Sainio, K., Rauvala, H., Lakso, M., Pichel, J. G., Westphal, H., Saarma, M., and Sariola, H. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493.
Regulation of cell fate decision of undifferentiated spermatogonia by GDNF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsV2qtL8%3D&md5=9fef5f444bc2f28ca398345054c353b2CAS | 10688798PubMed |

Morrow, C. M. K., Tyagi, G., Simon, L., Carnes, K., Murphy, K. M., Cooke, P. S., Hofmann, M.-C. C., and Hess, R. A. (2009). Claudin 5 expression in mouse seminiferous epithelium is dependent upon the transcription factor Ets variant 5 and contributes to blood–testis barrier function. Biol. Reprod. 81, 871–879.
Claudin 5 expression in mouse seminiferous epithelium is dependent upon the transcription factor Ets variant 5 and contributes to blood–testis barrier function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWrtr%2FL&md5=5d8fa8c049ffa876e32b3ef1f7167281CAS |

Morrow, C. M. K., Mruk, D., Cheng, C. Y., and Hess, R. A. (2010). Claudin and occludin expression and function in the seminiferous epithelium. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1679–1696.
Claudin and occludin expression and function in the seminiferous epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaisrrL&md5=a2954c138232d7d567788de323e3a33eCAS |

Noce, T., Okamoto-Ito, S., and Tsunekawa, N. (2001). Vasa homolog genes in mammalian germ-cell development. Cell Struct. Funct. 26, 131–136.
Vasa homolog genes in mammalian germ-cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVKhtbg%3D&md5=216e4a95f4a1c0873f9a0fb25b3593b2CAS | 11565805PubMed |

Oatley, J. M., and Brinster, R. L. (2006). Spermatogonial stem cells. Methods Enzymol. 419, 259–282.
Spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1SlsrY%3D&md5=91fb72b794f7959b684750534ba28d72CAS | 17141059PubMed |

Oatley, M. J., Racicot, K. E., and Oatley, J. M. (2011). Sertoli cells dictate spermatogonial stem-cell niches in the mouse testis. Biol. Reprod. 84, 639–645.
Sertoli cells dictate spermatogonial stem-cell niches in the mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFantbc%3D&md5=69a3f957a9229688b805919f495570d3CAS | 21084712PubMed |

Pelletier, R.-M. (2011). The blood–testis barrier: the junctional permeability, the proteins and the lipids. Prog. Histochem. Cytochem. 46, 49–127.
The blood–testis barrier: the junctional permeability, the proteins and the lipids.Crossref | GoogleScholarGoogle Scholar | 21705043PubMed |

Rahner, C., Mitic, L., and Anderson, J. (2001). Heterogeneity in expression and subcellular localization of claudins 2, 3, 4 and 5 in the rat liver, pancreas and gut. Gastroenterology 120, 411–422.
Heterogeneity in expression and subcellular localization of claudins 2, 3, 4 and 5 in the rat liver, pancreas and gut.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlKltLs%3D&md5=835f03bf8c329e7d4d6119ca1dc4763bCAS | 11159882PubMed |

Rathi, R., Honaramooz, A., Zeng, W., Schlatt, S., and Dobrinski, I. (2005). Germ-cell fate and seminiferous tubule development in bovine testis xenografts. Reproduction 130, 923–929.
Germ-cell fate and seminiferous tubule development in bovine testis xenografts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12msQ%3D%3D&md5=ed11feb37295c0a65f11c1802804d55aCAS | 16322552PubMed |

Raymond, K., Deugnier, M., Faraldo, M., and Glukhova, M. (2009). Adhesion within the stem-cell niches. Curr. Opin. Cell Biol. 21, 623–629.
Adhesion within the stem-cell niches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyqt7rN&md5=e8ac6c1b290500b4926f6d6652fd58feCAS | 19535237PubMed |

Raz, E. (2000). The function and regulation of vasa-like genes in germ-cell development. Genome Biology 1, reviews1017–reviews1017.6.
The function and regulation of vasa-like genes in germ-cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFOms70%3D&md5=35371cd17892caafb7022724f92f2241CAS | 11178242PubMed |

Reding, S. C., Stepnoski, A. L., Cloninger, E. W., and Oatley, J. M. (2010). THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139, 893–903.
THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLc%3D&md5=405468200ab78a250dc00d7d088b0700CAS | 20154176PubMed |

Yoshida, S., Sukeno, M., and Nabeshima, Y. (2007). A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726.
A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGmsLbI&md5=b067029d7aca8e96ad43e6123633f372CAS | 17823316PubMed |