Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Low levels of naturally occurring regulatory T lymphocytes in blood of mares with early pregnancy loss

Christine Aurich A F , Jürgen Weber B , Christina Nagel C , Maximiliane Merkl D , Rony Jude B , Sascha Wostmann B , Dirk Ollech E , Udo Baron E , Sven Olek E and Thomas Jansen B
+ Author Affiliations
- Author Affiliations

A Centre for Artificial Insemination and Embryo Transfer, University for Veterinary Sciences, 1210 Vienna, Austria.

B Certagen GmbH, D-53359 Rheinbach, Germany.

C Graf Lehndorff-Institute for Equine Science, University for Veterinary Sciences, 16845 Neustadt (Dosse), Germany.

D Clinic for Obstetrics, Gynaecology and Andrology, University for Veterinary Sciences, 1210 Vienna, Austria.

E Ivana Türbachova Laboratory for Epigenetics, Epiontis GmbH, D-12489 Berlin, Germany.

F Corresponding author. Email: christine.aurich@vetmeduni.ac.at

Reproduction, Fertility and Development 26(6) 827-833 https://doi.org/10.1071/RD13012
Submitted: 15 January 2013  Accepted: 15 May 2013   Published: 21 June 2013

Abstract

Early pregnancy loss is a major reason for low reproductive efficiency in the horse. In humans and mice, low numbers of regulatory T cells (Treg cells) are linked to miscarriage. The percentage of Treg cells in oestrous mares at the start of the breeding season was evaluated in relation to the outcome of subsequent pregnancy. For identification and quantification of Treg cells, a highly sensitive and specific qPCR assay targeting the Treg-specific demethylated region in the equine forkhead box transcription factor (FOXP3) gene was established. In a total of 108 mares, pregnancy was followed until detection of early pregnancy loss (n = 17), abortion without identification of an infectious or apparent cause (n = 9) or birth of a viable foal (n = 82). Measured Treg-cell levels did not significantly differ between mares that conceived (82%; 1.50 ± 0.04%) or did not get pregnant (18%; 1.45 ± 0.10%). The Treg-cell percentage at oestrus before breeding was significantly different (P < 0.05) between mares that either underwent early pregnancy loss up to Day 40 of pregnancy (1.29 ± 0.07%) and mares that aborted (1.61 ± 0.15%) or gave birth to a live foal (1.52 ± 0.05%). These results suggest that low levels of Treg cells in mares can contribute to pregnancy loss up to Day 40 after ovulation.

Additional keywords: fertility, FOXP3, qPCR.


References

Adams, G. P., Kastelic, J. P., Bergfelt, D. R., and Ginther, O. J. (1987). Effect of uterine inflammation and ultrasononically-detected uterine pathology on fertility in the mare. J. Reprod. Fertil. Suppl. 35, 445–454.
| 1:STN:280:DyaL1c%2Fmt1Cktg%3D%3D&md5=f92a5c3cb6419af5aeb7aa71b4cd183dCAS | 3316644PubMed |

Allen, W. R., and Stewart, F. (2001). Equine placentation. Reprod. Fertil. Dev. 13, 623–634.
Equine placentation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383lvFyqtA%3D%3D&md5=aa9d03c1463eedee3d8928fc30792a27CAS | 11999314PubMed |

Allen, W. R., and Wilsher, S. (2009). A review of implantation and early placentation in the mare. Placenta 30, 1005–1015.
A review of implantation and early placentation in the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGls7fI&md5=fd64311eb7f334a6cbe858e453790514CAS | 19850339PubMed |

Aluvihare, V. R., Kallikourdis, M., and Betz, A. G. (2004). Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271.
Regulatory T cells mediate maternal tolerance to the fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFeitL8%3D&md5=b789876c6c075e20719022d2d56b0682CAS | 14758358PubMed |

Aluvihare, V. R., Kallikourdis, M., and Betz, A. G. (2005). Tolerance, suppression and the fetal allograft. J. Mol. Med. 83, 88–96.
Tolerance, suppression and the fetal allograft.Crossref | GoogleScholarGoogle Scholar | 15605274PubMed |

Antczak, D. F. (2012). T-cell tolerance to the developing equine conceptus. Reprod. Domest. Anim. 47, 376–383.
T-cell tolerance to the developing equine conceptus.Crossref | GoogleScholarGoogle Scholar | 22827395PubMed |

Antczak, D. F., Miller, J. M., and Remick, L. H. (1984). Lymphocyte alloantigens of the horse. II. Antibodies to ELA antigens produced during equine pregnancy. J. Reprod. Immunol. 6, 283–297.
Lymphocyte alloantigens of the horse. II. Antibodies to ELA antigens produced during equine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2FgvFGjsg%3D%3D&md5=7a5252c1d6d69d173aa8c7f0d49e9b31CAS | 6481697PubMed |

Baron, U., Floess, S., Wieczorek, G., Baumann, K., Grützkau, A., Dong, J., Thiel, A., Boeld, T. J., Hoffmann, P., Edinger, M., Türbachova, I., Hamann, A., Olek, S., and Huehn, J. (2007). DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37, 2378–2389.
DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFahs7bE&md5=6996b791ea3c70d7758e9b4c9846a196CAS | 17694575PubMed |

Beagley, K. W., and Gockel, C. M. (2003). Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol. Med. Microbiol. 38, 13–22.
Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFyju74%3D&md5=86ffbc148cb726ddb40a3872a584ac44CAS | 12900050PubMed |

Bellinge, B. S., Copeland, C. M., Thomas, T. D., Mazzchelli, R. E., O’Neil, G., and Cohen, M. J. (1986). The influence of patient insemination on the implantation rate in an in vitro fertilization and embryo transfer program. Fertil. Steril. 46, 252–256.
| 1:STN:280:DyaL283nsFeiuw%3D%3D&md5=fc630e313d865a437478212a17f8634aCAS | 3732531PubMed |

Bergfelt, D. R., and Ginther, O. J. (1992). Embryonic loss in mares: role of the embryonic vesicle, corpus luteum and progesterone. J. Reprod. Fertil. 95, 339–347.
Embryonic loss in mares: role of the embryonic vesicle, corpus luteum and progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1Crsr0%3D&md5=c208c41fec2454b43fff34b7be50eaa8CAS | 1517992PubMed |

de Mestre, A. M., Noronha, L. E., Wagner, B., and Antczak, D. F. (2010). Split immunological tolerance to trophoblast. Int. J. Dev. Biol. 54, 445–455.
Split immunological tolerance to trophoblast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVaju74%3D&md5=62860bfa9804ab912285d459e8a44cfcCAS |

Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., Schlawe, K., Chang, H. D., Bopp, T., Schmitt, E., Klein-Hessling, S., Serfling, E., Hamann, A., and Huehn, J. (2007). Epigenetic control of the FOX3 locus in regulatory T cells. PLoS Biol. 5, e38.
Epigenetic control of the FOX3 locus in regulatory T cells.Crossref | GoogleScholarGoogle Scholar | 17298177PubMed |

Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003). FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336.
FOXP3 programs the development and function of CD4+CD25+ regulatory T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlyqs74%3D&md5=1609af07faffc9553196ea1190f18c84CAS | 12612578PubMed |

Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G., and Rudensky, A. Y. (2005). Regulatory T cell lineage specification by the forkhead transcription factor FOXP3. Immunity 22, 329–341.
Regulatory T cell lineage specification by the forkhead transcription factor FOXP3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Ohsbk%3D&md5=0d1083c79d26fa3b977e7d81335e4e70CAS | 15780990PubMed |

Ginther, O. J. (1983). Mobility of the equine conceptus. Theriogenology 19, 603–611.
Mobility of the equine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVGrsA%3D%3D&md5=8713292553a280a0cd1cd2698ad2ff2aCAS | 16725808PubMed |

Ginther, O. J. (1985). Dynamical physical interactions between the equine embryo and uterus. Equine Vet. J. Suppl. 3, 41–47.

Ginther, O. J., Bergfelt, D. R., Leith, G. S., and Scraba, S. T. (1985). Embryonic loss in mares: incidence and ultrasonic morphology. Theriogenology 24, 73–86.
Embryonic loss in mares: incidence and ultrasonic morphology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVyhtQ%3D%3D&md5=9c9721dc0b97a8309c35146531a66f23CAS | 16726060PubMed |

Guerin, L. R., Prins, J. R., and Robertson, S. A. (2009). Regulatory T cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum. Reprod. Update 15, 517–535.
Regulatory T cells and immune tolerance in pregnancy: a new target for infertility treatment?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVals7nK&md5=0b346cfbb4ffc245dee2a5e922531705CAS | 19279047PubMed |

Hamza, E., Steinbach, F., and Marti, E. (2012). CD4+CD25+ T cells expressing FoxP3 in Icelandic horses affected with insect hypersensitivity. Vet. Immunol. Immunopathol. 148, 139–144.
CD4+CD25+ T cells expressing FoxP3 in Icelandic horses affected with insect hypersensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2hsr3L&md5=9885eafe3cf18d2744b60dc5a24931ecCAS | 21700344PubMed |

Heimann, M., Janda, J., Sigurdardotti, O. G., Svansson, V., Klukowska, J. K., von Tscharner, C., Doherr, M., Broström, H., Andersson, L. S., Einarsson, S., Marti, E., and Torsteinsdottir, S. (2011). Skin-infiltrating T cells and cytokine expression in Icelandic horses affected with insect bite hypersensitivity: a possible role for regulatory T cells. Vet. Immunol. Immunopathol. 140, 63–74.
Skin-infiltrating T cells and cytokine expression in Icelandic horses affected with insect bite hypersensitivity: a possible role for regulatory T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslOgu7k%3D&md5=c350e77700c70dbe58591b381d0d9a8bCAS | 21168921PubMed |

Hinrichs, K. (1993). Embryo transfer in the mare: a status report. Anim. Reprod. Sci. 33, 227–240.
Embryo transfer in the mare: a status report.Crossref | GoogleScholarGoogle Scholar |

Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor FOXP3. Science 299, 1057–1061.
Control of regulatory T cell development by the transcription factor FOXP3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFarsbw%3D&md5=613dc77f1a5f4634b2caea232667c47aCAS | 12522256PubMed |

Klein, C., Scoggin, K. E., Ealy, A. D., and Troedsson, M. H. (2010). Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy. Biol. Reprod. 83, 102–113.
Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWqtLc%3D&md5=a3e3a1c8a353c89a2a0173e2faf74d2dCAS | 20335638PubMed |

Koblischke, P., Budik, S., Müller, J., and Aurich, C. (2010). Practical experience with the treatment of recipient mares with a non-steroidal anti-inflammatory drug in an equine embryo transfer programme. Reprod. Domest. Anim. 45, 1039–1041.
Practical experience with the treatment of recipient mares with a non-steroidal anti-inflammatory drug in an equine embryo transfer programme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsLjP&md5=ba91165df64696afd45b412ab752b09fCAS | 19515030PubMed |

Laugier, C., Foucher, N., Sevin, C., Leon, A., and Tapprest, J. (2011). A 24-year retrospective study of equine abortion in Normandy (France). J. Equine Vet. Sci. 31, 116–123.
A 24-year retrospective study of equine abortion in Normandy (France).Crossref | GoogleScholarGoogle Scholar |

Marconi, G., Auge, L., Oses, R., Quintana, R., Raffo, F., and Young, E. (1989). Does sexual intercourse improve pregnancy rate in gamete intrafallopian tube transfer? Fertil. Steril. 51, 357–359.
| 1:STN:280:DyaL1M7gslKjug%3D%3D&md5=47de43849110b283aec72a79b2958dbdCAS | 2643533PubMed |

Merkl, M., Ulbrich, S. E., Otzdorff, C., Herbach, N., Wanke, R., Wolf, E., Handler, J., and Bauersachs, S. (2010). Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy. Biol. Reprod. 83, 874–886.
Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls7%2FF&md5=dc8d6f0073935c55c61b641f84bdbd1fCAS | 20631402PubMed |

Morris, L. H. A., and Allen, W. R. (2002). Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. Equine Vet. J. 34, 51–60.
Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fptlequg%3D%3D&md5=152216c47208ee27d8f8142db07c1097CAS |

Noronha, L. E., and Antczak, D. F. (2010). Maternal immune responses to trophoblast: the contribution of the horse to pregnancy immunology. Am. J. Reprod. Immunol. 64, 231–244.
Maternal immune responses to trophoblast: the contribution of the horse to pregnancy immunology.Crossref | GoogleScholarGoogle Scholar | 20618178PubMed |

Polanczyk, M. J., Carson, B. D., Subramanian, S., Afentoulis, M., Vandenbark, A. A., Ziegler, S. F., and Ofner, H. (2004). Cutting edge: oestrogen drives expansion of the CD4+CD25+ regulatory T-cell compartment. J. Immunol. 173, 2227–2230.
| 1:CAS:528:DC%2BD2cXmt1Omur0%3D&md5=4a54ef7ece1db419100e4d676b532ce0CAS | 15294932PubMed |

Prieto, G. A., and Rosenstein, Y. (2006). Oestradiol potentiates the suppressive function of human CD4+CD25+ regulatory T cells by promoting their proliferation. Immunology 118, 58–65.
Oestradiol potentiates the suppressive function of human CD4+CD25+ regulatory T cells by promoting their proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkslyitrg%3D&md5=591cf0bfe6ac4b02c78b322f0711c95fCAS | 16630023PubMed |

Robbin, M. G., Wagner, B., Noronha, L., Antczak, D. F., and de Mestre, A. M. (2011). Subpopulations of equine blood lymphocytes expressing regulatory T-cell markers. Vet. Immunol. Immunopathol. 140, 90–101.
Subpopulations of equine blood lymphocytes expressing regulatory T-cell markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslOnsrs%3D&md5=8650e6430f105af125883c48b86c93aeCAS | 21208665PubMed |

Robertson, S. A., and Sharkey, D. J. (2001). The role of semen in induction of maternal immune tolerance to pregnancy. Semin. Immunol. 13, 243–254.
| 1:STN:280:DC%2BD3MzosFWgsA%3D%3D&md5=64c606c3410499e97566914fe9bffc0fCAS | 11437632PubMed |

Rowe, J. H., Ertelt, J. M., Xin, L., and Way, S. S. (2012). Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490, 102–106.
Pregnancy imprints regulatory memory that sustains anergy to fetal antigen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVaqsbnK&md5=dc5395dd3d8e3a37cb7146cc5e8f4278CAS | 23023128PubMed |

Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M., and Rudensky, A. Y. (2012). Extrathymic generation of regulatory T cells in placental mammals mitigates maternal–fetal conflict. Cell 150, 29–38.
Extrathymic generation of regulatory T cells in placental mammals mitigates maternal–fetal conflict.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFCku70%3D&md5=106e610f3c229d6a7d90cbffbcf1a6a1CAS | 22770213PubMed |

Sasaki, Y., Sakai, M., Miyazaki, S., Higuma, S., Shiozaki, A., and Saito, S. (2004). Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353.
Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7pslOkug%3D%3D&md5=16fbd36725706442ea065052502f5131CAS | 14997000PubMed |

Seavey, M. M., and Mosmann, T. R. (2008). Immunoregulation of fetal and anti-paternal immune responses. Immunol. Res. 40, 97–113.
Immunoregulation of fetal and anti-paternal immune responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFygsLw%3D&md5=7b6eb37776355dcd0bd37b3a16cae95bCAS | 18213524PubMed |

Squires, E. L., McCue, P. M., and Vanderwall, D. (1999). The current status of equine embryo transfer. Theriogenology 51, 91–104.
The current status of equine embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ptFCjuw%3D%3D&md5=fe636175d8d7fa4006a0b08594681288CAS | 10729065PubMed |

Tilburgs, T., Roelen, D. L., van der Mast, B. J., de Groot-Swings, G. M., Klejburg, C., Scherjon, S. A., and Claas, F. H. (2008). Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J. Immunol. 180, 5737–5745.
| 1:CAS:528:DC%2BD1cXkt1artbg%3D&md5=1366a0acae69ce550e0998f4ab1e0026CAS | 18390759PubMed |

Tremellen, K. P., Valbuena, D., Landeras, J., Ballesteros, A., Martinez, J., Mendoza, S., Norman, R. J., Robertson, S. A., and Simon, C. (2000). The effect of intercourse on pregnancy rates during assisted human reproduction. Hum. Reprod. 15, 2653–2658.
The effect of intercourse on pregnancy rates during assisted human reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FoslWlsw%3D%3D&md5=1e8bac026beac0c230cbfca927ac5615CAS | 11098040PubMed |

Wieczorek, G., Asemissen, A., Model, F., Türbachova, I., Floess, S., Liebenberg, V., Baron, U., Stauch, D., Kotsch, K., Pratschke, J., Hamann, A., Loddenkemper, C., Stein, H., Volk, H. D., Hoffmüller, U., Grützkau, A., Mustea, A., Huehn, J., Scheibenbogen, C., and Olek, S. (2009). Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 69, 599–608.
Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFShtA%3D%3D&md5=f499be686cb03a462fdbfffd24b844b5CAS | 19147574PubMed |

Willmann, C., Schuler, G., Hoffmann, B., Parvizi, N., and Aurich, C. (2011a). Effects of age and altrenogest treatment on conceptus development and secretion of LH, progesterone and eCG in early-pregnant mares. Theriogenology 75, 421–428.
Effects of age and altrenogest treatment on conceptus development and secretion of LH, progesterone and eCG in early-pregnant mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1KntA%3D%3D&md5=bc0cd99eadc4041f0b466f8a943385c2CAS | 21144568PubMed |

Willmann, C., Budik, S., Walter, I., and Aurich, C. (2011b). Influences of treatment of early-pregnant mares with the progestin altrenogest on embryonic development and gene expression in the endometrium and conceptus. Theriogenology 76, 61–73.
Influences of treatment of early-pregnant mares with the progestin altrenogest on embryonic development and gene expression in the endometrium and conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKiurw%3D&md5=ed13cf5be6604183673752b100e762a3CAS | 21396689PubMed |

Woods, G. L., Baker, C. B., Hillman, R. B., and Schlafer, D. H. (1985). Recent studies relating to early embryonic death in the mare. Equine Vet. J. Suppl. 3, 104–107.

World Breeding Association for Sport Horses (2012): Semen standards. (WBFSH: Huis ter Heide, NL.) Available at http://www.wbfsh.org/files/Semen%20standards.pdf [Verified 17 December 2012].

Zhao, J. X., Zeng, Y. Y., and Liu, Y. (2007). Fetal alloantigen is responsible for the expansion of the CD4+CD25+ regulatory T-cell pool during pregnancy. J. Reprod. Immunol. 75, 71–81.
Fetal alloantigen is responsible for the expansion of the CD4+CD25+ regulatory T-cell pool during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmtLjM&md5=abef6fa75a1069cf66c942b497553504CAS | 17686527PubMed |

Zheng, Y., and Rudensky, A. (2007). Foxp3 in control of the regulatory T-cell lineage. Nat. Immunol. 8, 457–462.
Foxp3 in control of the regulatory T-cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Khtr8%3D&md5=c5c4470fb00d577cc96812c30bc62bdfCAS | 17440451PubMed |