Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Exogenous γ-tocotrienol promotes preimplantation development and improves the quality of porcine embryos

Enok Lee A D , Sung-Hun Min A D , Bong-Seok Song B , Ji-Yeong Yeon A , Jin-Woo Kim A , Jung-Ho Bae A , Soo-Yong Park A , Yong-Hee Lee A , Sun-Uk Kim B , Dong-Seok Lee C , Kyu-Tae Chang B and Deog-Bon Koo A E
+ Author Affiliations
- Author Affiliations

A Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Gyeongbuk 712-714, Republic of Korea.

B National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungcheongbuk-do 363-883, Republic of Korea.

C School of Life Science, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.

D These authors contributed equally to this work.

E Corresponding author. Email: dbkoo@daegu.ac.kr

Reproduction, Fertility and Development 27(3) 481-490 https://doi.org/10.1071/RD13167
Submitted: 30 May 2013  Accepted: 11 December 2013   Published: 13 January 2014

Abstract

γ-tocotrienol (GTT), an isomer of vitamin E, has been the subject of increasing interest due to its strong anti-oxidant effects. Therefore, in this study, the effects of GTT on blastocyst development, expression levels of reactive oxygen species (ROS) and apoptotic index were investigated in preimplantation porcine embryos. After in vitro maturation and fertilisation, porcine embryos were cultured for 6 days in porcine zygote medium 3 supplemented with or without GTT (200 μM) under oxidative stress conditions (200 μM hydrogen peroxide (H2O2)). Blastocyst development was significantly improved in the GTT-treated group when compared with the H2O2-treated group (P < 0.05). Subsequent evaluation of the intracellular levels of ROS and numbers of apoptotic nuclei in GTT-treated blastocysts revealed that ROS levels of GTT-treated porcine blastocysts were decreased (P < 0.05) and the numbers of apoptotic nuclei were reduced by GTT treatment in porcine embryos. Moreover, the total cell numbers of blastocysts were significantly increased in the GTT-treated group relative to the untreated group under H2O2-induced oxidative stress (P < 0.05). The expression levels of apoptosis-related genes (BCL-XL, BAX) in GTT-treated blastocysts were then investigated using real-time reverse transcription polymerase chain reaction. Expression of the anti-apoptotic BCL-XL gene was shown to be increased in the GTT-treated blastocyst group, whereas expression of the pro-apoptotic BAX gene was decreased. Taken together, these results suggest that GTT (200 μM) under H2O2-induced oxidative stress, thereby improving the developmental competence of porcine embryos via modulation of intracellular levels of ROS and the apoptotic index during the preimplantation stage.

Additional keywords: antioxidant, apoptosis.


References

Abeydeera, L. R., and Day, B. N. (1997). Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen–thawed ejaculated spermatozoa. Biol. Reprod. 57, 729–734.
Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen–thawed ejaculated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFCqs7c%3D&md5=12143625a416daf64c259679fdb69f0eCAS | 9314573PubMed |

Agarwal, A., Gupta, S., and Sharma, R. (2005). Oxidative stress and its implications in female infertility – a clinician’s perspective. Reprod. Biomed. Online 11, 641–650.
Oxidative stress and its implications in female infertility – a clinician’s perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12qurvM&md5=bba24f6619c362607a65dc5a1f0eea9fCAS | 16409717PubMed |

Aitken, R. J., Clarkson, J. S., and Fishel, S. (1989). Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 41, 183–197.
Generation of reactive oxygen species, lipid peroxidation, and human sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslWksLs%3D&md5=0bded68484f81cb14840787ba0a3ccf8CAS | 2553141PubMed |

Betts, D. H., and King, W. A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–191.
Genetic regulation of embryo death and senescence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7nslartw%3D%3D&md5=7fe7eb8abbae07be4ec70316beaae26fCAS | 11198081PubMed |

Boise, L. H., Gonzalez-Garcia, M., Postema, C. E., Ding, L., Lindsten, T., Turka, L. a., Mao, X., Nunez, G., and Thompson, C. B. (1993). bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608.
bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVans7g%3D&md5=294f061e92e34347771b52dbac6603b6CAS | 8358789PubMed |

Choi, J., Park, S. M., Lee, E., Kim, J. H., Jeong, Y. I., Lee, J. Y., Park, S. W., Kim, H. S., Hossein, M. S., and Jeong, Y. W. (2008). Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol. Reprod. Dev. 75, 1127–1135.
Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFWgt7w%3D&md5=798126f537a6e49d1e3a79853654e256CAS | 18324672PubMed |

Chow, C. K. (1991). Vitamin E and oxidative stress. Free Radic. Biol. Med. 11, 215–232.
Vitamin E and oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFyr&md5=2b4651e4fa791c260f25e976503126a0CAS | 1937140PubMed |

Cory, S., and Adams, J. M. (1998). Matters of life and death: programmed cell death at Cold Spring Harbor. Biochim. Biophys. Acta 1377, R25–R44.
| 1:CAS:528:DyaK1cXitVGqsro%3D&md5=cd8d9fcd3102454a3ea820f6b54ef243CAS | 9606979PubMed |

Crow, J. P. (1997). Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1, 145–157.
Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislGktr0%3D&md5=597aa7b27c1381886b1e2a633f7c8c57CAS | 9701053PubMed |

Day, B. N. (2000). Reproductive biotechnologies: current status in porcine reproduction. Anim. Reprod. Sci. 60–61, 161–172.
Reproductive biotechnologies: current status in porcine reproduction.Crossref | GoogleScholarGoogle Scholar | 10844192PubMed |

Deleuze, S., and Goudet, G. (2010). Cysteamine supplementation of in vitro maturation media: a review. Reprod. Domest. Anim. 45, e476–e482.
Cysteamine supplementation of in vitro maturation media: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsLfF&md5=18087562ec7f31f880bb187d1dbbcf4fCAS | 20210887PubMed |

Favetta, L. A., St John, E. J., King, W. A., and Betts, D. H. (2007). High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic. Biol. Med. 42, 1201–1210.
High levels of p66shc and intracellular ROS in permanently arrested early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVGhtb0%3D&md5=04bba82d94651c3bef57ba58d08a4fceCAS | 17382201PubMed |

Funahashi, H., Cantley, T. C., Stumpf, T. T., Terlouw, S. L., and Day, B. N. (1994). In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilization. Biol. Reprod. 50, 1072–1077.
In vitro development of in vitro-matured porcine oocytes following chemical activation or in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3pslSktQ%3D%3D&md5=bb8acc1a6c3de6b70a7e0d0bc8f019ffCAS | 8025163PubMed |

Goto, Y., Noda, Y., Mori, T., and Nakano, M. (1993). Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15, 69–75.
Increased generation of reactive oxygen species in embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFOnsL8%3D&md5=4394b3637b26f863c2714af0ae936cb7CAS | 8359711PubMed |

Guérin, P., El Mouatassim, S., and Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings.Crossref | GoogleScholarGoogle Scholar | 11284661PubMed |

Gupta, M. K., Uhm, S. J., Han, D. W., and Lee, H. T. (2007). Embryo quality and production efficiency of porcine parthenotes is improved by phytohemagglutinin. Mol. Reprod. Dev. 74, 435–444.
Embryo quality and production efficiency of porcine parthenotes is improved by phytohemagglutinin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtLs%3D&md5=32bc58b3c6d8514f4f6c7c3888b62010CAS | 16998814PubMed |

Halliwell, B., and Aruoma, O. I. (1991). DNA damage by oxygen-derived species its mechanism and measurement in mammalian systems. FEBS Lett. 281, 9–19.
DNA damage by oxygen-derived species its mechanism and measurement in mammalian systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVaisbo%3D&md5=a3dfb097549f49751f43c728bd6867a3CAS | 1849843PubMed |

Hao, Y., Lai, L., Mao, J., Im, G. S., Bonk, A., and Prather, R. S. (2004). Apoptosis in parthenogenetic preimplantation porcine embryos. Biol. Reprod. 70, 1644–1649.
Apoptosis in parthenogenetic preimplantation porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlOmtrw%3D&md5=30ecbb4ffb2eddc48b36fcaa535fed42CAS | 14766725PubMed |

Herrera, B., Alvarez, A. M., Sanchez, A., Fernandez, M., Roncero, C., Benito, M., and Fabregat, I. (2001). Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor β in fetal hepatocytes. FASEB J. 15, 741–751.
Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor β in fetal hepatocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFWmsLc%3D&md5=b4f1d225780dff1ea98e64fed791340aCAS | 11259392PubMed |

Hossein, M. S., Hashem, M. A., Jeong, Y. W., Lee, M. S., Kim, S., Kim, J. H., Koo, O. J., Park, S. M., Lee, E. G., and Park, S. W. (2007). Temporal effects of α-tocopherol and l-ascorbic acid on in vitro-fertilized porcine embryo development. Anim. Reprod. Sci. 100, 107–117.
Temporal effects of α-tocopherol and l-ascorbic acid on in vitro-fertilized porcine embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2is7Y%3D&md5=214bd19a62bf61a1c2f2fa70327d6ae3CAS | 16860500PubMed |

Hu, J., Cheng, D., Gao, X., Bao, J., Ma, X., and Wang, H. (2012). Vitamin C enhances the in vitro development of porcine pre-implantation embryos by reducing oxidative stress. Reprod. Domest. Anim. 47, 873–879.
Vitamin C enhances the in vitro development of porcine pre-implantation embryos by reducing oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKgsbY%3D&md5=066012fee08e059ce371feb81d470c94CAS | 22239270PubMed |

Huang, Y., Tang, X., Xie, W., Zhou, Y., Li, D., Zhou, Y., Zhu, J., Yuan, T., Lai, L., Pang, D., and Ouyang, H. (2011). Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos. Biochem. Biophys. Res. Commun. 411, 397–401.
Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1arsL4%3D&md5=be47946880d35df5f13cad47206dea68CAS | 21749856PubMed |

Jurisicova, A., Latham, K. E., Casper, R. F., and Varmuza, S. L. (1998). Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev. 51, 243–253.
Expression and regulation of genes associated with cell death during murine preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlSisrs%3D&md5=f2242fb316ac4c6c07805b9be47d41ccCAS | 9771644PubMed |

Khalil, W. A., Marei, W. F., and Khalid, M. (2013). Protective effects of antioxidants on linoleic acid-treated bovine oocytes during maturation and subsequent embryo development. Theriogenology 80, 161–168.
Protective effects of antioxidants on linoleic acid-treated bovine oocytes during maturation and subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslCgs70%3D&md5=2fa7ee79a70356f5b335de363690f101CAS | 23683689PubMed |

Levy, R. R., Cordonier, H., Czyba, J. C., and Guerin, J. F. (2001). Apoptosis in preimplantation mammalian embryo and genetics. Ital. J. Anat. Embryol. 106, 101–108.
| 1:STN:280:DC%2BD3MnosF2rtw%3D%3D&md5=aef702624dc047c6670b60ef3ed18235CAS | 11732565PubMed |

Makpol, S., Zainuddin, A., Chua, K. H., Yusof, Y. A., and Ngah, W. Z. (2012). Gamma-tocotrienol modulation of senescence-associated gene expression prevents cellular aging in human diploid fibroblasts. Clinics (Sao Paulo) 67, 135–143.
Gamma-tocotrienol modulation of senescence-associated gene expression prevents cellular aging in human diploid fibroblasts.Crossref | GoogleScholarGoogle Scholar | 22358238PubMed |

Mazlan, M., Then, S. M., Top, G. M., and Ngah, W. Z. (2006). Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. J. Neurol. Sci. 243, 5–12.
Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisF2rur8%3D&md5=5fe87f262bdd6cd20d584e17e4130088CAS | 16442562PubMed |

McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S., and Speake, B. K. (2000). Fatty-acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.
| 1:CAS:528:DC%2BD3cXpsl2msA%3D%3D&md5=55edb2ac960e2ffe69c7a5c87775d9cdCAS | 10793638PubMed |

Ménézo, Y., Dale, B., and Cohen, M. (2010). DNA damage and repair in human oocytes and embryos: a review. Zygote 18, 357–365.
DNA damage and repair in human oocytes and embryos: a review.Crossref | GoogleScholarGoogle Scholar | 20663262PubMed |

Mito, T., Yoshioka, K., Yamashita, S., Suzuki, C., Noguchi, M., and Hoshi, H. (2012). Glucose and glycine synergistically enhance the in vitro development of porcine blastocysts in a chemically defined medium. Reprod. Fertil. Dev. 24, 443–450.
Glucose and glycine synergistically enhance the in vitro development of porcine blastocysts in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Wqsb8%3D&md5=fb25c57d6ebd7f7faa0f543d7c17c306CAS | 22401276PubMed |

Nánássy, L., Lee, K., Jávor, A., and Macháty, Z. (2008). Effects of activation methods and culture conditions on development of parthenogenetic porcine embryos. Anim. Reprod. Sci. 104, 264–274.
Effects of activation methods and culture conditions on development of parthenogenetic porcine embryos.Crossref | GoogleScholarGoogle Scholar | 17320316PubMed |

Nasr-Esfahani, M. H., Aitken, J. R., and Jiohnson, M. H. (1990). Hydrogen peroxide levels in mouse oocytes and early cleavage-stage embryos developed in vitro or in vivo. Development 109, 501–507.
| 1:CAS:528:DyaK3cXlsV2nsbo%3D&md5=6e63ec91932c6cbf2d59ef21fa22f4e1CAS | 2401209PubMed |

Olson, S. E., and Seidel, G. E. (2000). Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Reprod. 62, 248–252.
Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVOktA%3D%3D&md5=980f70bbfe23f4d5be0dc4640acd357dCAS | 10642559PubMed |

Papaioannou, V. E., and Ebert, K. M. (1988). The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development 102, 793–803.
| 1:STN:280:DyaL1M%2FgsVKhug%3D%3D&md5=c4e6314cef8e23d436c321fb6d769739CAS | 3168789PubMed |

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=1884323dd0d93da095f4a6cffec6438fCAS | 8145215PubMed |

Pierce, G. B., Parchment, R. E., and Lewellyn, A. L. (1991). Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation. 46, 181–186.
Hydrogen peroxide as a mediator of programmed cell death in the blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFWgs70%3D&md5=892a1aaab6bf4c15d8aa88d5f6b0c9d0CAS | 1655543PubMed |

Sabri, A., Hughie, H. H., and Lucchesi, P. A. (2003). Regulation of hypertrophic and apoptotic signalling pathways by reactive oxygen species in cardiac myocytes. Antioxid. Redox Signal. 5, 731–740.
Regulation of hypertrophic and apoptotic signalling pathways by reactive oxygen species in cardiac myocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWqsL8%3D&md5=123c6030c6748306b0a959ab85ee7c31CAS | 14588146PubMed |

Schaffer, S., Muller, W. E., and Eckert, G. P. (2005). Tocotrienols: constitutional effects in ageing and disease. J. Nutr. 135, 151–154.
| 1:CAS:528:DC%2BD2MXhsVKjtL8%3D&md5=ee5a83e9dfa7a49237df63da7ece1f29CAS | 15671205PubMed |

Serbinova, E., Kagan, V., Han, D., and Packer, L. (1991). Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic. Biol. Med. 10, 263–275.
Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1aitbw%3D&md5=4cfa18d6ce66c22366614c6ca4868a30CAS | 1649783PubMed |

Shen, X. H., Jin, Y. X., Ko, Y. G., Chung, H. J., Cui, X. S., and Kim, N. H. (2006). High mobility group box 1 (HMGB1) enhances porcine parthenotes developing in vitro in the absence of BSA. Theriogenology 66, 2077–2083.
High mobility group box 1 (HMGB1) enhances porcine parthenotes developing in vitro in the absence of BSA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmsLnJ&md5=0cdb85cb3310b7a923515a77eb069880CAS | 16860383PubMed |

Spiteller, G. (2001). Peroxidation of linoleic acid and its relation to aging and age dependent diseases. Mech. Ageing Dev. 122, 617–657.
Peroxidation of linoleic acid and its relation to aging and age dependent diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFeisLk%3D&md5=62d0006115bb6bf2309c2bb1b296e871CAS | 11322990PubMed |

Sturmey, R. G., and Leese, H. J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.
Energy metabolism in pig oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjtr4%3D&md5=46fc42a60c590e3a176e8106a20fa324CAS | 12887276PubMed |

Sun, W., Xu, W., Liu, H., Liu, J., Wang, Q., Zhou, J., Dong, F., and Chen, B. (2009). γ-Tocotrienol induces mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells. J. Nutr. Biochem. 20, 276–284.
γ-Tocotrienol induces mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1agt7k%3D&md5=483586633a97542a2aa9d3b6af92ac6cCAS | 18602811PubMed |

Takahashi, M. (2012). Oxidative stress and redox regulation on in vitro development of mammalian embryos. J. Reprod. Dev. 58, 1–9.
Oxidative stress and redox regulation on in vitro development of mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVOnsbY%3D&md5=7facbacf0ebe711763d07d7363981d19CAS | 22450278PubMed |

Takahashi, A., Masuda, A., Sun, M., Centonze, V. E., and Herman, B. (2004). Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res. Bull. 62, 497–504.
Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVOksr8%3D&md5=56e7a97f780f402cbdb7ca47256b6793CAS | 15036564PubMed |

Tappel, A. L. (1980). Vitamin E and selenium protection from in vivo lipid peroxidation. Ann. N. Y. Acad. Sci. 355, 18–31.
Vitamin E and selenium protection from in vivo lipid peroxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXot1Gqsw%3D%3D&md5=cf870fe7fddcdf138fd174895c1a8994CAS | 6940474PubMed |

Tareq, K. M., Akter, Q. S., Khandoker, M. A., and Tsujii, H. (2012). Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes. J. Reprod. Dev. 58, 621–628.
Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWnsr8%3D&md5=b3c32f536fbbb44e7c22fee3bf49fd68CAS | 22673206PubMed |

Thompson, J. G. E., Simpson, A. C., Pugh, P. A., Donnelly, P. E., and Tervit, H. R. (1990). Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J. Reprod. Fertil. 89, 573–578.
Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsV2nsLk%3D&md5=533ad6b2154e9dab9429df040a76523bCAS |

Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W., and Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13, 998–1002.
Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gurs%3D&md5=85f69b0aa5cf281fbf6f007a27cbb059CAS | 9619561PubMed |

Zingg, J. M. (2007). Modulation of signal transduction by vitamin E. Mol. Aspects Med. 28, 481–506.
Modulation of signal transduction by vitamin E.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1amsrnP&md5=d6f80d0c98b87140a4823c1418a63992CAS | 17320164PubMed |