Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Mitochondria and vesicles differ between adult and prepubertal sheep oocytes during IVM

Karen L. Reader A D , Neil R. Cox B , Jo-Ann L. Stanton C and Jennifer L. Juengel A
+ Author Affiliations
- Author Affiliations

A Animal Productivity, AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel 9053, New Zealand.

B Bioinformatics and Statistics, AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel 9053, New Zealand.

C Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

D Corresponding author. Email: karen.reader@agresearch.co.nz

Reproduction, Fertility and Development 27(3) 513-522 https://doi.org/10.1071/RD13359
Submitted: 23 October 2013  Accepted: 20 December 2013   Published: 24 January 2014

Abstract

Oocytes from prepubertal animals have a reduced ability to undergo normal embryo development and produce viable offspring. The correct quantity, activity and cytoplasmic distribution of oocyte organelles are essential for oocyte maturation, fertilisation and subsequent embryo development. The aim of this study was to quantify the ultrastructural differences between oocytes from prepubertal lamb and adult ewes using electron microscopy and stereology. We also determined whether quantitative polymerase chain reaction (qPCR) methods give comparable estimates of mitochondrial number to stereology. Mean storage vesicle volume was greater in adult compared with lamb oocytes before IVM and decreased during maturation in both adult and lamb oocytes. Mitochondrial volume and number increased in adult oocytes during maturation; however, no increase was observed in lamb oocytes. Mitochondrial DNA copy number measured by qPCR showed no differences between adult and lamb oocytes. A different distribution of mitochondria was observed in lamb oocytes before maturation, while the percentage of hooded mitochondria increased during maturation in adult oocytes and decreased in the lamb. In conclusion, the present study has identified differences in the vesicles and mitochondria between adult and lamb oocytes from ewes that may contribute to reduced developmental competence in prepubertal oocytes.

Additional keywords: embryo, electron microscopy, in vitro maturation, lipid, mtDNA copy number, oocyte quality.


References

Angermüller, S., and Fahimi, H. D. (1982). Imidazole-buffered osmium tetroxide: an excellent stain for visualization of lipids in transmission electron microscopy. Histochem. J. 14, 823–835.
Imidazole-buffered osmium tetroxide: an excellent stain for visualization of lipids in transmission electron microscopy.Crossref | GoogleScholarGoogle Scholar | 6182131PubMed |

Armstrong, D. T. (2001). Effects of maternal age on oocyte developmental competence. Theriogenology 55, 1303–1322.
Effects of maternal age on oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSis78%3D&md5=0bfd53287b2fe6a2b9d3d4693b184ab8CAS | 11327686PubMed |

Auclair, S., Uzbekov, R., Elis, S., Sanchez, L., Kireev, I., Lardic, L., Dalbies-Tran, R., and Uzbekova, S. (2013). Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am. J. Physiol. Endocrinol. Metab. 304, E599–E613.
Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKnsb8%3D&md5=4268c020b972f4c10506044bf1bbc8d1CAS | 23321473PubMed |

Barakat, I. A. H., El-Ashmaoui, H. M., Barkawi, A., Kandeal, S. A., and El-Nahass, E. (2012). Ultra-structural study of Egyptian buffalo oocytes before and after in vitro maturation. Afr. J. Biotechnol. 11, 7592–7602.
Ultra-structural study of Egyptian buffalo oocytes before and after in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmslahsbo%3D&md5=c93c7d9c0c50b3b9ce203d4329e1d796CAS |

Berlinguer, F., Leoni, G., Succu, S., Satta, V., Manca, M., Piu, P., Gallus, M., Gonzales Bulnes, A., and Naitana, S. (2011). Effect of season on the in vitro embryo production from prepubertal ovine oocytes. Reprod. Domest. Anim. 46, 90.

Boni, R., Cocchia, N., Silvestre, F., Tortora, G., Lorizio, R., and Tosti, E. (2008). Juvenile and adult immature and in vitro matured ovine oocytes evaluated in relation to membrane electrical properties, calcium stores, IP3 sensitivity and apoptosis occurrence in cumulus cells. Mol. Reprod. Dev. 75, 1752–1760.
Juvenile and adult immature and in vitro matured ovine oocytes evaluated in relation to membrane electrical properties, calcium stores, IP3 sensitivity and apoptosis occurrence in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqsrzI&md5=42474a140ea3c611a4ba6c0770d90692CAS | 18404643PubMed |

Brevini, T. A. L., Cillo, F., Antonini, S., and Gandolfi, F. (2007). Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim. Reprod. Sci. 98, 23–38.
Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Slu7c%3D&md5=1f35a105cf25f8fd1343ac4347892035CAS |

Chiaratti, M. R., Bressan, F. F., Ferreira, C. R., Caetano, A. R., Smith, L. C., Vercesi, A. E., and Meirelles, F. V. (2010). Embryo mitochondrial DNA depletion is reversed during early embryogenesis in cattle. Biol. Reprod. 82, 76–85.
Embryo mitochondrial DNA depletion is reversed during early embryogenesis in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WgsrrI&md5=9ea2faf893a65b36188c01e2fdd917ddCAS | 19696017PubMed |

Cognié, Y., Poulin, N., Locatelli, Y., and Mermillod, P. (2004). State-of-the-art production, conservation and transfer of in-vitro-produced embryos in small ruminants. Reprod. Fertil. Dev. 16, 437–445.
State-of-the-art production, conservation and transfer of in-vitro-produced embryos in small ruminants.Crossref | GoogleScholarGoogle Scholar | 15315742PubMed |

Cotterill, M., Harris, S. E., Collado Fernandez, E., Lu, J., Huntriss, J. D., Campbell, B. K., and Picton, H. M. (2013). The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro. Mol. Hum. Reprod. 19, 444–450.
The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCqurfP&md5=83c0ff882f100661f2396a96c24ff9cdCAS | 23468533PubMed |

Cran, D. G. (1985). Qualitative and quantitative structural changes during pig oocyte maturation. J. Reprod. Fertil. 74, 237–245.
Qualitative and quantitative structural changes during pig oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1GhsLs%3D&md5=e6114739f1149c071190a77a27d2fc54CAS | 4020770PubMed |

Cran, D. G., Moor, R. M., and Hay, M. F. (1980). Fine structure of the sheep oocyte during antral follicle development. J. Reprod. Fertil. 59, 125–132.
Fine structure of the sheep oocyte during antral follicle development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c3ltFGisw%3D%3D&md5=7a747052721ab2e7e16eb6898dd20db0CAS | 7190607PubMed |

Cruz-Orive, L. M., and Hunziker, E. B. (1986). Stereology for anisotropic cells: application to growth cartilage. J. Microsc. 143, 47–80.
Stereology for anisotropic cells: application to growth cartilage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FhtFKrsA%3D%3D&md5=0e85e3c157b6638324b0b510d0f68160CAS | 3761364PubMed |

Damiani, P., Fissore, R. A., Cibelli, J. B., Long, C. R., Balise, J. J., Robl, J. M., and Duby, R. T. (1996). Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocytes. Mol. Reprod. Dev. 45, 521–534.
Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVWgt7k%3D&md5=45d54bd44324474f2b068d0934889121CAS | 8956291PubMed |

de Paz, P., Sánchez, A. J., De la Fuente, J., Chamorro, C. A., Alvarez, M., Anel, E., and Anel, L. (2001). Ultrastructural and cytochemical comparison between calf and cow oocytes. Theriogenology 55, 1107–1116.
Ultrastructural and cytochemical comparison between calf and cow oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3jtVKjtA%3D%3D&md5=a9eefa837ab00ed94f9589a87c483b49CAS | 11322238PubMed |

Docampo, R., and Moreno, S. N. J. (2011). Acidocalcisomes. Cell Calcium 50, 113–119.
Acidocalcisomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVaisLvO&md5=6c446b6dbe79f3c6ffd77b12bf423305CAS | 21752464PubMed |

Docampo, R., de Souza, W., Miranda, K., Rohloff, P., and Moreno, S. N. H. (2005). Acidocalcisomes – conserved from bacteria to man. Nat. Rev. Microbiol. 3, 251–261.
Acidocalcisomes – conserved from bacteria to man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslGjtbc%3D&md5=8f6def5d8d59918cd27349b0e6181e3dCAS | 15738951PubMed |

Dumollard, R., Duchen, M., and Carroll, J. (2007). The role of mitochondrial function in the oocyte and embryo. Curr. Top. Dev. Biol. 77, 21–49.
The role of mitochondrial function in the oocyte and embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Gltb4%3D&md5=42344ed0bf0ffa5090ae8641a59040a4CAS | 17222699PubMed |

El Shourbagy, S. H., Spikings, E. C., Freitas, M., and St John, J. C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131, 233–245.
Mitochondria directly influence fertilisation outcome in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsL4%3D&md5=f0457ff7daef9cacf24b578829b3d4e2CAS | 16452717PubMed |

Fair, T., Hulshof, S. C., Hyttel, P., Greve, T., and Boland, M. (1997). Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat. Embryol. (Berl.) 195, 327–336.
Oocyte ultrastructure in bovine primordial to early tertiary follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mtFOrtg%3D%3D&md5=aa13b101791b48d8151b54b781836c6eCAS | 9108198PubMed |

Falconnier, C., and Kress, A. (1992). Ultrastructural aspects of oocyte growth in the marsupial Monodelphis domestica (grey short-tailed opossum). J. Anat. 181, 481–498.
| 1304586PubMed |

Ferreira, E. M., Vireque, A. A., Adona, P. R., Meirelles, F. V., Ferriani, R. A., and Navarro, P. A. A. S. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71, 836–848.
Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVSgs7k%3D&md5=2f969d51916b31e6f4494f4b3e4eb143CAS | 19121865PubMed |

Gou, K., Guan, H., Bai, J., Cui, X., Wu, Z., Yan, F., and An, X. (2009). Field evaluation of juvenile in vitro embryo transfer (JIVET) in sheep. Anim. Reprod. Sci. 112, 316–324.
Field evaluation of juvenile in vitro embryo transfer (JIVET) in sheep.Crossref | GoogleScholarGoogle Scholar | 18565700PubMed |

Hyttel, P., Callesen, H., and Greve, T. (1986a). Ultrastructural features of preovulatory oocyte maturation in superovulated cattle. J. Reprod. Fertil. 76, 645–656.
Ultrastructural features of preovulatory oocyte maturation in superovulated cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287pvFyrtQ%3D%3D&md5=f498e05ee3506d5187fafeb02bc16e55CAS | 3084771PubMed |

Hyttel, P., Xu, K. P., Smith, S., and Greve, T. (1986b). Ultrastructure of in-vitro oocyte maturation in cattle. J. Reprod. Fertil. 78, 615–625.
Ultrastructure of in-vitro oocyte maturation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ht1equg%3D%3D&md5=9fdb4142278b2841aaed1902f2bf4d63CAS | 3806520PubMed |

Iwata, H., Goto, H., Tanaka, H., Sakaguchi, Y., Kimura, K., Kuwayama, T., and Monji, Y. (2011). Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reprod. Fertil. Dev. 23, 424–432.
Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12nt7s%3D&md5=20070ec4ad3390158e2aba4099fe27f1CAS | 21426860PubMed |

Kochhar, H. P. S., Wu, B., Morris, L. H. A., Buckrell, B. C., Pollard, J. W., Basrur, P. K., and King, W. A. (2002). Maturation status, protein synthesis and developmental competence of oocytes derived from lambs and ewes. Reprod. Domest. Anim. 37, 19–25.
Maturation status, protein synthesis and developmental competence of oocytes derived from lambs and ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlGmtbw%3D&md5=20ee5649fb2f391d63cffd760fe8f0b3CAS |

Kruip, T. A. M., Cran, D. G., van Beneden, T. H., and Dieleman, S. J. (1983). Structural changes in bovine oocytes during final maturation in vivo. Gamete Res. 8, 29–47.
Structural changes in bovine oocytes during final maturation in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvVyisLc%3D&md5=05dc9456cce4c4433ad5010691c38cd1CAS |

Ledda, S., Bogliolo, L., Calvia, P., Leoni, G., and Naitana, S. (1997). Meiotic progression and developmental competence of oocytes collected from juvenile and adult ewes. J. Reprod. Fertil. 109, 73–78.
Meiotic progression and developmental competence of oocytes collected from juvenile and adult ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gntbs%3D&md5=32d439354df3c2337699f8a5bcbc99fbCAS | 9068416PubMed |

Leoni, G. G., Bebbere, D., Succu, S., Berlinguer, F., Mossa, F., Galioto, M., Bogliolo, L., Ledda, S., and Naitana, S. (2007). Relations between relative mRNA abundance and developmental competence of ovine oocytes. Mol. Reprod. Dev. 74, 249–257.
Relations between relative mRNA abundance and developmental competence of ovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2qtg%3D%3D&md5=3756839ed69f1fab7fb3f97e081b72b6CAS | 16941675PubMed |

Máximo, D. M., Martins da Silva, I. G., Mondadori, R. G., Neves, J. P., and Lucci, C. M. (2012). Ultrastructural characteristics of sheep oocytes during in vitro maturation (IVM). Small Rumin. Res. 105, 210–215.
Ultrastructural characteristics of sheep oocytes during in vitro maturation (IVM).Crossref | GoogleScholarGoogle Scholar |

Mayhew, T. M. (1991). The new stereological methods for interpreting functional morphology from slices of cells and organs. Exp. Physiol. 76, 639–665.
| 1:STN:280:DyaK38%2FnsFanuw%3D%3D&md5=5edd7dcfb774b9274f2218f6b3f18a7fCAS | 1742008PubMed |

McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S. M., and Speake, B. K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.
| 1:CAS:528:DC%2BD3cXpsl2msA%3D%3D&md5=55edb2ac960e2ffe69c7a5c87775d9cdCAS | 10793638PubMed |

O’Brien, J. K., Dwarte, D., Ryan, J. P., Maxwell, W. M., and Evans, G. (1996). Developmental capacity, energy metabolism and ultrastructure of mature oocytes from prepubertal and adult sheep. Reprod. Fertil. Dev. 8, 1029–1037.
Developmental capacity, energy metabolism and ultrastructure of mature oocytes from prepubertal and adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FntlGmtg%3D%3D&md5=0d56a72d118f4b0d76dfcfba2405f406CAS | 8916278PubMed |

O’Brien, J. K., Catt, S. L., Ireland, K. A., Maxwell, W. M. C., and Evans, G. (1997). In vitro and in vivo developmental capacity of oocytes from prepubertal and adult sheep. Theriogenology 47, 1433–1443.
In vitro and in vivo developmental capacity of oocytes from prepubertal and adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVynsw%3D%3D&md5=af3cff2465188f54c18f5d14dd95c441CAS | 16728089PubMed |

O’Brien, J. K., Dwarte, D., Ryan, J. P., Maxwell, W. M. C., and Evans, G. (2000). Comparison of in vitro maturation, in vitro fertilization, metabolism and ultrastructure of oocytes from prepubertal and adult pigs. Reprod. Domest. Anim. 35, 101–107.

Petr, J., Rozinek, J., Hruban, V., Jílek, F., Sedmíková, M., Vaňourková, Z., and Němeček, Z. (2001). Ultrastructural localization of calcium deposits during in vitro culture of pig oocytes. Mol. Reprod. Dev. 58, 196–204.
Ultrastructural localization of calcium deposits during in vitro culture of pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslOiuw%3D%3D&md5=d867a97196092da8f95c87b6b6d7dc96CAS | 11139232PubMed |

Pikó, L., and Matsumoto, L. (1976). Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev. Biol. 49, 1–10.
Number of mitochondria and some properties of mitochondrial DNA in the mouse egg.Crossref | GoogleScholarGoogle Scholar | 943339PubMed |

Pikó, L., and Taylor, K. D. (1987). Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123, 364–374.
Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 2443405PubMed |

Ptak, G., Loi, P., Dattena, M., Tischner, M., and Cappai, P. (1999). Offspring from one-month-old lambs: studies on the developmental capability of prepubertal oocytes. Biol. Reprod. 61, 1568–1574.
Offspring from one-month-old lambs: studies on the developmental capability of prepubertal oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1yntrg%3D&md5=d7630e2259125693f0a438a4960ed26aCAS | 10570004PubMed |

Quirke, J. F., and Hanrahan, J. P. (1977). Comparison of the survival in the uteri of adult ewes of cleaved ova from adult ewes and ewe lambs. J. Reprod. Fertil. 51, 487–489.
Comparison of the survival in the uteri of adult ewes of cleaved ova from adult ewes and ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c%2FmvFSitg%3D%3D&md5=4a587e2562f11e8319bedd3389ad448cCAS | 592304PubMed |

Ramos, I. B., Miranda, K., Pace, D. A., Verbist, K. C., Lin, F. Y., Zhang, Y., Oldfield, E., Machado, E. A., De Souza, W., and Docampo, R. (2010). Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP. Biochem. J. 429, 485–495.
Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCns7w%3D&md5=a330b03ec672eacf3f58beff5afa0276CAS | 20497125PubMed |

Reader, K. L., Haydon, L. J., Littlejohn, R. P., Juengel, J. L., and McNatty, K. P. (2012). Booroola BMPR1B mutation alters early follicular development and oocyte ultrastructure in sheep. Reprod. Fertil. Dev. 24, 353–361.
Booroola BMPR1B mutation alters early follicular development and oocyte ultrastructure in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OitL0%3D&md5=89b919b70a0d911b92c70e5e2542f90aCAS | 22281082PubMed |

Reynier, P., May-Panloup, P., Chretien, M. F., Morgan, C. J., Jean, M., Savagner, F., Barriere, P., and Malthiery, Y. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 7, 425–429.
Mitochondrial DNA content affects the fertilizability of human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1CqsLg%3D&md5=d992edf173ed21a2847ca52be9e660caCAS | 11331664PubMed |

Salamone, D. F., Damiani, P., Fissore, R. A., Robl, J. M., and Duby, R. T. (2001). Biochemical and developmental evidence that ooplasmic maturation of prepubertal bovine oocytes is compromised. Biol. Reprod. 64, 1761–1768.
Biochemical and developmental evidence that ooplasmic maturation of prepubertal bovine oocytes is compromised.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFGgt7g%3D&md5=db825b99c22c1bb8d082d8611ed6d179CAS | 11369606PubMed |

Santos, T. A., El Shourbagy, S., and St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 85, 584–591.
Mitochondrial content reflects oocyte variability and fertilization outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=4452f90dcd3784588fc955885e08c8d7CAS | 16500323PubMed |

Senger, P. L., and Saacke, R. G. (1970). Unusual mitochondria of the bovine oocyte. J. Cell Biol. 46, 405–408.
Unusual mitochondria of the bovine oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c3lvFSkuw%3D%3D&md5=7f3b2b6c743d89879d05f7a69f6ab1c1CAS | 5449185PubMed |

Shoubridge, E. A., and Wai, T. (2007). Mitochondrial DNA and the mammalian oocyte. Curr. Top. Dev. Biol. 77, 87–111.
Mitochondrial DNA and the mammalian oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Gltbo%3D&md5=a09ddf3fff46478c618e646e90a97f7bCAS | 17222701PubMed |

Stephens, R. J., and Bils, R. F. (1965). An atypical mitochondrial form in normal rat liver. J. Cell Biol. 24, 500–504.
An atypical mitochondrial form in normal rat liver.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2M7jtVyjtw%3D%3D&md5=5edb645781549294f8d205c0d44aef70CAS | 14326127PubMed |

Steuerwald, N., Barritt, J. A., Adler, R., Malter, H., Schimmel, T., Cohen, J., and Brenner, C. A. (2000). Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 8, 209–215.
Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1OitLs%3D&md5=f7637002f4ba7a5e1db9b92d8f1f77c2CAS | 11014500PubMed |

Stojkovic, M., Machado, S. A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P. B., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–909.
Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=0d1a08b5bcdd8b3387833fe9afb4cda4CAS | 11207207PubMed |

Tandler, B., Krahenbuhl, S., and Brass, E. P. (1991). Unusual mitochondria in the hepatocytes of rats treated with a vitamin B12 analogue. Anat. Rec. 231, 1–6.
Unusual mitochondria in the hepatocytes of rats treated with a vitamin B12 analogue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1ag&md5=81ccc5ad6877ba20c3184d6e8437e2d4CAS | 1661107PubMed |

Thundathil, J., Filion, F., and Smith, L. C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71, 405–413.
Molecular control of mitochondrial function in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSltLk%3D&md5=209c9aa36d66b4ef5cb55263ef01a2b1CAS | 15895466PubMed |

Van Blerkom, J. (2008). Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod. Biomed. Online 16, 553–569.
Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells.Crossref | GoogleScholarGoogle Scholar | 18413065PubMed |

Van Blerkom, J. (2009). Mitochondria in early mammalian development. Semin. Cell Dev. Biol. 20, 354–364.
Mitochondria in early mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCmsLs%3D&md5=de77495b8e71488ea676f3d940b6a2a1CAS | 19136067PubMed |

Vasilev, F., Chun, J. T., Gragnaniello, G., Garante, E., and Santella, L. (2012). Effects of ionomycin on egg activation and early development in starfish. PLoS ONE 7, e39231.
Effects of ionomycin on egg activation and early development in starfish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFaks7o%3D&md5=e2fbc4394e8bef80ed7f5bb59ea64769CAS | 22723970PubMed |

Velilla, E., Rodriguez-Gonzalez, E., Vidal, F., Izquierdo, D., and Paramio, M. T. (2006). Mitochondrial organization in prepubertal goat oocytes during in vitro maturation and fertilization. Mol. Reprod. Dev. 73, 617–626.
Mitochondrial organization in prepubertal goat oocytes during in vitro maturation and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1KitLg%3D&md5=1fe725c7891781a78746fe7319dc419cCAS | 16450409PubMed |

Zeng, H. T., Yeung, W. S., Cheung, M. P., Ho, P. C., Lee, C. K., Zhuang, G. L., Liang, X. Y., and O, W. S. (2009). In vitro-matured rat oocytes have low mitochondrial deoxyribonucleic acid and adenosine triphosphate contents and have abnormal mitochondrial redistribution. Fertil. Steril. 91, 900–907.
In vitro-matured rat oocytes have low mitochondrial deoxyribonucleic acid and adenosine triphosphate contents and have abnormal mitochondrial redistribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslWmsb4%3D&md5=180135b8250a38c2e252d097a80f87b4CAS | 18321496PubMed |