CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


 

Article << Previous     |     Next >>        Online Early    

Impacts of and interactions between environmental stress and epigenetic programming during early embryo development

Michael J. Bertoldo A F , Yann Locatelli A B C D , Christopher O’Neill E and Pascal Mermillod A C D

A Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
B Muséum National d’Histoire Naturelle (MNHN), Laboratoire de la Réserve de la Haute Touche, 36290, Obterre, France.
C Centre National de la Recherche Scientifique (CNRS), UMR7247, F-37380 Nouzilly, France.
D Université François Rabelais de Tours, F-37041 Tours, France.
E Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW 2065, Australia.
F Corresponding author. Email: michael1984@hotmail.fr

Reproduction, Fertility and Development - http://dx.doi.org/10.1071/RD14049
Submitted: 11 February 2014  Accepted: 31 March 2014   Published online: 26 June 2014


 
 Full Text
 PDF (802 KB)
 Export Citation
 Print
  
Abstract

The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.

Additional keywords: apoptosis, assisted reproductive technologies, cAMP response element-binding protein, embryotrophins, oocyte quality, phosphatidylinositol 3-kinase.


References

Bagg, M. A., Nottle, M. B., Armstrong, D. T., and Grupen, C. G. (2007). Relationship between follicle size and oocyte developmental competence in prepubertal and adult oocytes. Reprod. Fertil. Dev. 19, 797–803.
CrossRef | CAS | PubMed |

Bakos, H. W., Henshaw, R. C., Mitchell, M., and Lane, M. (2011). Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil. Steril. 95, 1700–1704.
CrossRef | PubMed |

Barker, D. J. P., Gluckman, P. D., Godfrey, K. M., Harding, J. E., Owens, J. A., and Robinson, J. S. (1993). Fetal nutrition and cardiovascular disease in adult life. Lancet 341, 938–941.
CrossRef | CAS |

Bártová, E., Krejčí, J., Harničarová, A., Galiová, G., and Kozubek, S. (2008). Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem. 56, 711–721.
CrossRef | PubMed |

Beilby, K. H., de Graaf, S. P., Evans, G., Maxwell, W. M. C., Wilkening, S., Wrenzycki, C., and Grupen, C. G. (2011). Quantitative mRNA expression in ovine blastocysts produced from X- and Y-chromosome bearing sperm, both in vitro and in vivo. Theriogenology 76, 471–481.
CrossRef | CAS | PubMed |

Benoff, S., and Hurley, I. R. (2001). Epigenetic and experimental modifications in early mammalian development: part I. Preface. Hum. Reprod. Update 7, 211–216.
CrossRef | CAS | PubMed |

Bertoldo, M., Holyaoke, P. K., Evans, G., and Grupen, C. G. (2010). Oocyte developmental competence is reduced in sows during the seasonal infertility period. Reprod. Fertil. Dev. 22, 1222–1229.
CrossRef | CAS | PubMed |

Bi, Y., Zhou, L., Wang, Y., Hai, T., Huo, R., Zhou, Z., Zhou, Q., and Sha, J. (2011). WDR82, a key epigenetic-related factor, plays a crucial role in normal early embryonic development in mice. Biol. Reprod. 84, 756–764.
CrossRef | CAS | PubMed |

Bleckmann, S. C., Blendy, J. A., Rudolph, D., Monaghan, A. P., Schmid, W., and Schültz, G. (2002). Activating transcription factor 1 and CREB are imprtant for cell survival during early mouse development. Mol. Cell. Biol. 22, 1919–1925.
CrossRef | CAS | PubMed |

Bowdin, S., Allen, C., Kirby, G., Brueton, L., Afnan, M., Barratt, C., Kirkman-Brown, J., Harrison, R., Maher, E. R., and Reardon, W. (2007). A survey of assisted reproductive technology births and imprinting disorders. Hum. Reprod. 22, 3237–3240.
CrossRef | PubMed |

Bowman, P., and McLaren, A. (1970). Viability and growth of mouse embryos after in vitro culture and fusion. J. Embryol. Exp. Morphol. 23, 693–704.
| CAS | PubMed |

Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Avarez, P., Ramirez, M. A., and Gutierrez-Adan, A. (2012a). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 77, 785–793.
CrossRef | PubMed |

Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., and Gutierrez-Adan, A. (2012b). Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring. Biol. Reprod. 87, 34.
CrossRef | PubMed |

Chandrakanthan, V., Li, A., Chami, O., and O’Neill, C. (2006). Effects of in vitro fertilization and embryo culture on TRP53 and Bax expression in B6 mouse embryos. Reprod. Biol. Endocrinol. 4, 61.
CrossRef | PubMed |

Chandrakanthan, V., Chami, O., Stojanov, T., and O’Neill, C. (2007). Variable expressivity of the tumour suppressor protein TRP53 in cryopreserved human blastocysts. Reprod. Biol. Endocrinol. 5, 39.
CrossRef | PubMed |

Chi, M. M., Pingsterhaus, J., Caryannopoulos, M., and Moley, K. H. (2000). Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J. Biol. Chem. 275, 40 252–40 257.
CrossRef | CAS |

Chu, T., Dufort, I., and Sirard, M.-A. (2012). Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology 77, 1928–1938.
CrossRef | CAS | PubMed |

Corcoran, D., Fair, T., Park, S., Rizos, D., Patel, O. V., Smith, G. W., Coussens, P. M., Ireland, J. J., Boland, M. P., Evans, A. C., and Lonergan, P. (2006). Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine oocytes. Reproduction 131, 651–660.
CrossRef | CAS | PubMed |

Curhan, G. C., Chertow, G. M., Willett, W. C., Spiegelman, D., Colditz, G. A., Manson, J. E., Speizer, F. E., and Stampfer, M. J. (1996). Birth weight and adult hypertension and obesity in women. Circulation 94, 1310–1315.
CrossRef | CAS | PubMed |

De Rycke, M., Liebaers, I., and Van Steirteghem, A. (2002). Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Hum. Reprod. 17, 2487–2494.
CrossRef | CAS | PubMed |

Dieleman, S. J., Hendriksen, P. J. M., Viuff, D., Thomsen, P. D., Hyttel, P., Knijn, H. M., Wrenzycki, C., Kruip, T. A. M., Niemann, H., Gadella, B. M., Bevers, M. M., and Vols, P. L. A. M. (2002). Effect of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology 57, 5–20.
CrossRef | CAS | PubMed |

Doherty, A. S., Mann, M. R., Tremblay, K. D., Bartolomei, M. S., and Schultz, R. M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526–1535.
CrossRef | CAS | PubMed |

Dolinoy, D. C., Weinhouse, C., Jones, T. R., Rozek, L. S., and Jirtle, R. L. (2010). Variable histone modifcations at the Avy metastable epiallele. Epigenetics 5, 637–644.
CrossRef | CAS | PubMed |

Duranthon, V., Watson, A. J., and Lonergan, P. (2008). Preimplantation embryo programming: transcription, epigenetics, and culture environment Reproduction 135, 141–150.
CrossRef | CAS | PubMed |

Ecker, D. J., Stein, P., Xu, Z., Williams, C. J., Kopf, G. S., Bilker, W. B., Abel, T., and Schultz, R. M. (2004). Long-term effects of culture of preimplantation mouse embryos on behaviour. Proc. Natl Acad. Sci. USA 101, 1595–1600.
CrossRef | CAS | PubMed |

el Hajj, N., and Haaf, T. (2013). Epigenetic disturbamces in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil. Steril. 99, 632–641.
CrossRef | CAS | PubMed |

Fair, T., Hyttel, P., and Greve, T. (1995). Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol. Reprod. Dev. 42, 437–442.
CrossRef | CAS | PubMed |

Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placenta from in vitro-produced bivine embryos. Theriogenology 65, 178–191.
CrossRef | PubMed |

Fernández-Gonzalez, R., Moreira, P., Bilbao, A., Jiménez, A., Pérez-Crespo, M., Ramírez, M. A., Rodríquez De Fonseca, F., Pintado, B., and Gutiérrez-Adán, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl Acad. Sci. USA 101, 5880–5885.
CrossRef | PubMed |

Fernandez-Gonzalez, R., Ramirez, M. A., Pericuesta, E., Calle, A., and Gutierrez, C. G. (2010). Histone modifications at the blastocyst Axin1FU locus mark the heritability of in vitro culture-induced epigentic altertions in mice. Biol. Reprod. 83, 720–727.
CrossRef | CAS | PubMed |

Fullston, T., Palmer, N. O., Owens, J. A., Mitchell, M., Bakos, H. W., and Lane, M. (2012). Diet-induced paternal obesity in the abscence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400.
CrossRef | CAS | PubMed |

Ganeshan, L., Li, A., and O’Neill, C. (2010). Transformation-related protein 53 expression in the early mouse embryo compromises preimplantation embryonic development by preventing the formation of a proliferating inner cell mass. Biol. Reprod. 83, 958–964.
CrossRef | CAS | PubMed |

Gardner, D. K., and Lane, M. (2005). Ex vivo early embryo development and effects on gene expression and imprinting. Reprod. Fertil. Dev. 17, 361–370.
CrossRef | PubMed |

Gillman, M. W. (2005). Developmental origins of health and disease. N. Engl. J. Med. 353, 1848–1850.
CrossRef | CAS | PubMed |

Grupen, C. G., Boquest, A. C., Ashman, R. J., Armstrong, D. T., and Nottle, M. B. (2003). Relationship between donor animal age, follicular fluid store content and oocyte developmental competence. Reprod. Fertil. Dev. 15, 81–87.
CrossRef | PubMed |

Halliday, J., Oke, K., Breheny, S., Algar, E., and Amor, D. J. (2004). Beckwith–Wiedemann syndrome and IVF: a case-control study. Am. J. Hum. Genet. 75, 526–528.
CrossRef | CAS | PubMed |

Hansen, M., Bower, C., Milne, E., De Klerk, N., and Kurinczuk, J. (2005). Assisted reproductive technologies and the risk of birth defects: a systematic review. Hum. Reprod. 20, 328–338.
CrossRef | PubMed |

Hervouet, E., Vallette, F. M., and Cartron, P. (2009). Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4, 487–499.
CrossRef | CAS | PubMed |

Ho, Y., Doherty, A. S., and Schultz, R. M. (1994). Mouse primplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. Mol. Reprod. Dev. 38, 131–141.
CrossRef | CAS | PubMed |

Ho, Y., Wigglesworth, K., Eppig, J. J., and Schultz, R. M. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–238.
CrossRef | CAS | PubMed |

Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135.
CrossRef | CAS | PubMed |

Hu, Y. G., Hirasawa, R., Hu, J. L., Hata, K., Li, C. L., Jin, Y., Chen, T., Li, E., Rigolet, M., Viegas-Péquignot, E., Sasaki, H., and Xu, G. L. (2008). Regulation of DNA methylation activity through Dnmt3L promotor methylation by Dnmt3 enzymes in embryonic development. Hum. Mol. Genet. 17, 2654–2664.
CrossRef | CAS | PubMed |

Jin, X. L., and O’Neill, C. (2010). The presence and activation of two essential transcription factors (cAMP response element-binding protein and cAMP-dependent transcription factor ATF1) in the two-cell mouse embryo. Biol. Reprod. 82, 459–468.
CrossRef | CAS | PubMed |

Jin, X. L., Chandrakanthan, V., Morgan, H. D., and O’Neill, C. (2009). Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway. Biol. Reprod. 80, 286–294.
CrossRef | CAS | PubMed |

Jousan, F. D., Oliveira, L. J., and Hansen, P. J. (2008). Short-term culture of in vitro produced bovine preimplantation embryos with insulin-like growth factor-I prevents heat shock-induced apoptosis through activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol. Reprod. Dev. 75, 681–688.
CrossRef | CAS | PubMed |

Katsushima, K., and Kondo, Y. (2014). Non-coding RNAs as epigenetic regulator of glioma stem-cell like differentiation. Front. Genet. 5, 14.
CrossRef | PubMed |

Katz-Jaffe, M. G., Linck, D. W., Schoolcraft, W. B., and Gardner, D. K. (2005). A proteomic analysis of mammalian pre-implantation embryonic development. Reproduction 130, 899–905.
CrossRef | CAS | PubMed |

Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., Wahl, G. M., and Belmonte, J. C. I. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144.
CrossRef | CAS | PubMed |

Khosla, S., Dean, W., Brown, D., Reik, W., and Feil, R. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918–926.
CrossRef | CAS | PubMed |

Kind, K. L., Collett, R. A., Harvey, A. J., and Thompson, J. G. (2005). Oxygen-related expression of GLUT-1, GLUT-3 and VEGF in the mouse blastocyst. Mol. Reprod. Dev. 70, 37–44.
CrossRef | CAS | PubMed |

Lane, M., and Gardner, D. K. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109, 153–164.
CrossRef | CAS | PubMed |

Lane, M., and Gardner, D. K. (1998). Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13, 991–997.
CrossRef | CAS | PubMed |

Lane, M., and Gardner, D. K. (2005). Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod. Fertil. Dev. 17, 371–378.
CrossRef | CAS | PubMed |

Li, A., Chandrakanthan, V., Chami, O., and O’Neill, C. (2007). Culture of zygotes increases p53 expression in B6 mouse embryos, which reduces embryo viability. Biol. Reprod. 76, 362–367.
CrossRef | CAS | PubMed |

Li, A., Ganeshan, L., and O’Neill, C. (2012). The effect of Trp53 gene-dosage and parent-of-origin of inheritance on mouse gamete and embryo function in vitro. Biol. Reprod. 86, 175.
CrossRef | CAS | PubMed |

Lim, D., Bowdin, S. C., Tee, L., Kirby, G. A., Blair, E., Fryer, A., Lam, W., Oley, C., Cole, T., Brueton, L. A., Reik, W., Macdonald, F., and Maher, E. R. (2009). Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies. Hum. Reprod. 24, 741–747.
CrossRef | PubMed |

Lonergan, P., Monaghan, P., Rizos, D., Boland, M. P., and Gordon, I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilisation, and culture in vitro. Mol. Reprod. Dev. 37, 48–53.
CrossRef | CAS | PubMed |

Lonergan, P., Rizos, D., Gutierrez-Adan, A., Fair, T., and Boland, M. P. (2003). Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod. Domest. Anim. 38, 259–267.
CrossRef | CAS | PubMed |

Lonergan, P., Pedersen, H. G., Rizos, D., Greve, T., Thomsen, P. D., Fair, T., Evans, A., and Boland, M. P. (2004). Effect of the post-fertilization culture environment on the incidence of chromosome aberrations in bovine blastocysts. Biol. Reprod. 71, 1096–1100.
CrossRef | CAS | PubMed |

Lucifero, D., Chaillet, J. R., and Trasler, J. M. (2004). Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum. Reprod. Update 10, 3–18.
CrossRef | CAS | PubMed |

Ludwig, M., Katalinic, A., Gross, S., Sutcliffe, A., Varon, R., and Horsthemke, B. (2005). Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J. Med. Genet. 42, 289–291.
CrossRef | CAS | PubMed |

Maher, E. R., Afnan, M., and Barratt, C. L. (2003). Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum. Reprod. 18, 2508–2511.
CrossRef | PubMed |

Mahsoudi, B., Li, A., and O’Neill, C. (2007). Assessment of the long term and transgenerational consequences of perturbing preimplantation embryo development in mice. Biol. Reprod. 77, 889–896.
CrossRef | CAS | PubMed |

Mansouri-Attia, N., Snadra, O., Aubert, J., Degrelle, S., Everts, R. E., Giraud-Delville, C., Heyman, Y., Galio, L., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., and Renard, J.-P. (2009). Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl Acad. Sci. USA 106, 5687–5692.
CrossRef | CAS | PubMed |

Marchal, R., Vigneron, C., Perreau, C., Bali-Papp, A., and Mermillod, P. (2002). Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 57, 1523–1532.
CrossRef | CAS | PubMed |

Marión, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., Fernandez-Captillo, O., Serrano, M., and Blasco, M. A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149–1153.
CrossRef | PubMed |

Market Velker, B. A., Fernandes, A. D., and Mann, M. R. W. (2010). Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol. Reprod. 83, 938–950.
CrossRef | CAS | PubMed |

Market Velker, B. A., Denomme, M. M., and Mann, M. R. (2012). Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol. Reprod. 86, 1–16.
CrossRef |

McEwen, K. R., Leitch, H. G., Amouroux, R., and Hajkova, P. (2013). The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos. Biochem. Soc. Trans. 41, 711–719.
CrossRef | CAS | PubMed |

Mermillod, P., Oussaid, B., and Cognié, Y. (1999). Aspects of follicular and oocyte maturation that affect the developmental potential of embryos. J. Reprod. Fertil. Suppl. 54, 449–460.
| CAS | PubMed |

Mermillod, P., Dalbiès-Tran, R., Uzbekova, S., Thélie, A., Traverso, J. M., Perreau, C., Papillier, P., and Monget, P. (2008). Factors affecting oocyte quality: who is driving the follicle? Reprod. Domest. Anim. 43, 393–400.
CrossRef | PubMed |

Morgan, H. D., Jin, X. L., Li, A., Whitelaw, E., and O’Neill, C. (2008). The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigenetically labile allele, agouti viable yellow, in mice. Biol. Reprod. 79, 618–623.
CrossRef | CAS | PubMed |

Mourot, M., Dufort, I., Gravel, C., Algrainy, O., Dieleman, S., and Sirard, M.-A. (2006). The influence of follicle size, FSH-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels. Mol. Reprod. Dev. 73, 1367–1379.
CrossRef | CAS | PubMed |

Mu, X. F., Jin, X. L., Farnham, M. M. J., Li, A., and O’Neill, C. (2011). DNA damage-sensing kinases mediate the mouse 2-cell embryo’s response to genotoxic stress. Biol. Reprod. 85, 524–535.
CrossRef | CAS | PubMed |

Nasr-Esfahani, M. M., and Johnson, M. (1991). The origin of reactive oxygen species in mouse embryos cultured in vitro. Development 113, 551–560.
| CAS | PubMed |

Niemann, H., and Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 21–34.
CrossRef | CAS | PubMed |

Niida, H., and Nakanishi, M. (2006). DNA checkpoints in mammals. Mutagenesis 21, 3–9.
CrossRef | CAS | PubMed |

Nowak-Imialek, M., Wrenzycki, C., Herrmann, D., Lucas-Hahn, A., Lagutina, I., Lemme, E., Lazzari, G., Galli, C., and Niemann, H. (2008). Messenger RNA expression patterns of histone-associated gens in bovine preimplantation embryos derived from different origns. Mol. Reprod. Dev. 75, 731–743.
CrossRef | CAS | PubMed |

O’Neill, C. (1997). Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol. Reprod. 56, 229–237.
CrossRef | CAS | PubMed |

O’Neill, C. (1998). Autoctorine mediators are required to act on the embryo by the 2-cell stage to promote normal development and survival of mouse preimplantation embryos in vitro. Biol. Reprod. 58, 1303–1309.
CrossRef | CAS | PubMed |

O’Neill, C. (2005). The role of PAF in embryo physiology. Hum. Reprod. Update 11, 215–228.
CrossRef | CAS | PubMed |

O’Neill, C., Li, Y., and Jin, X. L. (2012). Survival signaling in the preimplantation embryo. Theriogenology 77, 773–784.
CrossRef | CAS | PubMed |

Pantazis, P., and Bollenbach, T. (2012). Transcription factor kinetics and the emerging asymmetry in the early mammalian embryo. Cell Cycle 11, 2055–2058.
CrossRef | CAS | PubMed |

Payne, S. R., Munday, R., and Thompson, J. G. (1992). Addition of superoxide dismutase and catalase does not necessarily over-come developmental retardation of one-cell mouse embryos during in-vitro culture. Reprod. Fertil. Dev. 4, 167–174.
CrossRef | CAS | PubMed |

Rappolee, D. A. (2007). Impact of transient stress and stress enzymes on development. Dev. Biol. 304, 1–8.
CrossRef | CAS | PubMed |

Rinaudo, P., and Schultz, R. M. (2004). Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128, 301–311.
CrossRef | CAS | PubMed |

Rizos, D., Lonergan, P., Boland, M. P., Arroyo-Garcia, R., Pintado, B., La Fuente, J., and Gutierrez-Adan, A. (2002a). Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocsyst quality. Biol. Reprod. 66, 589–595.
CrossRef | CAS | PubMed |

Rizos, D., Ward, F., Duffy, P., Boland, M. P., and Lonergan, P. (2002b). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: Implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–248.
CrossRef | CAS | PubMed |

Romar, R., De Santis, T., Papillier, P., Perreau, C., Thélie, A., Dell’Aquila, M. E., Mermillod, P., and Dalbiès-Tran, R. (2011). Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod. Domest. Anim. 46, e23–e30.
CrossRef | CAS | PubMed |

Rossignol, S., Stenou, V., Chalas, C., Kerjean, A., Rigolet, M., Viegas-Pequignot, E., Jouannet, P., Le Bouc, Y., and Gicquel, C. (2006). The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J. Med. Genet. 43, 902–907.
CrossRef | CAS | PubMed |

Ruthenburg, A. J., Aliis, C. D., and Wysocka, J. (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30.
CrossRef | CAS | PubMed |

Schieve, L. A., Meikle, S. F., Ferre, C., Peterson, H. B., Jeng, G., and Wilcox, L. S. (2002). Low and very low birth weights in infants conceived with the use of assisted reproductive technology. N. Engl. J. Med. 346, 731–737.
CrossRef | PubMed |

Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G., and Taylor, S. M. (2011). DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochindria. Proc. Natl Acad. Sci. USA 108, 3630–3635.
CrossRef | CAS | PubMed |

Sirard, M.-A. (2001). Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology 55, 1241–1254.
CrossRef | CAS | PubMed |

Souza-Fabjan, J. M. G., Locatelli, Y., Duffard, N., Corbine, E., Touzé, J.-L., Perreau, C., Beckers, J. F., Freias, V. J. F., and Mermillod, P. (2014). In vitro embryo production in goats: slaughterhouse and laparoscopic ovum pick up-derived oocytes have different kinetics and requirements regarding maturation media. Theriogenology 81, 1021–1031.
CrossRef |

Stojanov, T., and O’Neill, C. (2001). In vitro fertilization causes epigenetic modifications to the onset of gene expression from the zygotic genome in mice. Biol. Reprod. 64, 696–705.
CrossRef | CAS | PubMed |

Summers, M. C., and Biggers, J. D. (2003). Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum. Reprod. Update 9, 557–582.
CrossRef | CAS | PubMed |

Sutcliffe, A. G., and Ludwig, M. (2007). Outcome of assisted reproduction. Lancet 370, 351–359.
CrossRef | PubMed |

Szutorisz, H., and Dillon, N. (2005). The epigenetic basis for embryonic stem cell pluripotency. BioEssays 27, 1286–1293.
CrossRef | CAS | PubMed |

Thompson, J. G., Mitchell, M., and Kind, K. L. (2007). Embryo culture and long-term consequences. Reprod. Fertil. Dev. 19, 43–52.
CrossRef | PubMed |

Vassena, R., Dee Schramm, R., and Latham, K. E. (2005). Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos. Mol. Reprod. Dev. 72, 430–436.
CrossRef | CAS | PubMed |

Vigneault, C., McGraw, S., Massicotte, L., and Sirard, M.-A. (2004). Transcription factor expression patterns in bovine in vitro-derived embryos prior to maternal–zygotic transition. Biol. Reprod. 70, 1701–1709.
CrossRef | CAS | PubMed |

Watkins, A. J., Platt, D., Papenbrock, T., Wilkins, A., Eckert, J. J., Kwong, W. Y., Osmond, C., Hanson, M., and Fleming, T. P. (2007). Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc. Natl Acad. Sci. USA 104, 5449–5454.
CrossRef | CAS | PubMed |

Whincup, P. H., Kaye, S. J., Owen, C. G., Huxley, R., Cook, D. G., Anazawa, S., Barrett-Connor, E., Bhargava, S. K., Birgisdottir, B. E., Carlsson, S., de Rooij, S. R., Dyck, R. F., Eriksson, J. G., Falkner, B., Fall, C., Forsén, T., Grill, V., Gudnason, V., Hulman, S., Hyppönen, E., Jeffreys, M., Lawlor, D. A., Leon, D. A., Minami, J., Mishra, G., Osmond, C., Power, C., Rich-Edwards, J. W., Roseboom, T. J., Sachdev, H. S., Syddall, H., Thorsdottir, I., Vanhala, M., Wadsworth, M., and Yarbrough, D. E. (2008). Birth weight and risk of Type 2 diabetes: a systematic review. JAMA 300, 2886–2897.
CrossRef | CAS | PubMed |

Whitten, W. K., and Biggers, J. D. (1968). Complete development in-vitro of the preimplantation stages of the mouse in a simple chemically defined medium. J. Reprod. Fertil. 17, 399–401.
CrossRef | CAS | PubMed |

Wisborg, K., Ingerslev, H. J., and Henriksen, T. B. (2010). In vitro fertilization and preterm delivery, low birth weight, and admission to the neonatal intensive care unit: a prospective follow-up study. Fertil. Steril. 94, 2102–2106.
CrossRef | PubMed |

Wrenzycki, C., Herrman, D., Carnwarth, J. W., and Niemann, H. (1999). Alterations in the relative abundance of gene transcripts in preimplatation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 8–18.
CrossRef | CAS | PubMed |

Wrenzycki, C., Herrmann, D., Keskintepe, L., Martins, A., Sirisathien, S., Brackett, B., and Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16, 893–901.
CrossRef | CAS | PubMed |

Wrenzycki, C., Herrmann, D., Lucas-Hahn, A., Korsawe, K., Lemme, E., and Niemann, H. (2005). Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod. Fertil. Dev. 17, 23–35.
CrossRef | CAS | PubMed |

Xie, Y., Pusecheck, E. E., and Rappolee, D. A. (2006). Effects of SAPK/JNK inhibitors on preimplantation mouse embryo development are influenced greatly by the amount of stress induced by the media. Mol. Hum. Reprod. 12, 217–224.
CrossRef | CAS | PubMed |

Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
CrossRef | CAS | PubMed |

Young, L. E., Fernandes, K., McEvoy, T. G., Butterwith, S. C., Gutierrez, C. G., Carolan, C., Broadbent, P. J., Robinson, J. J., Wilmut, I., and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–154.
CrossRef | CAS | PubMed |

Zander, D. L., Thompson, J. G., and Lane, M. (2006). Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol. Reprod. 74, 288–294.
CrossRef | CAS | PubMed |

Zheng, W., Gorre, N., Shen, Y., Noda, T., Ogawa, W., Lundin, E., and Liu, K. (2010). Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis. EMBO Rep. 11, 890–895.
CrossRef | CAS | PubMed |


   
 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014