Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Differential gene-expression profiles from canine cumulus cells of ovulated versus in vitro-matured oocytes

Su-Jin Cho A B E , Kyeong-Lim Lee A , Yu-Gon Kim A , Dong-Hoon Kim C , Jae-Gyu Yoo D , Byoung-Chul Yang C , Jin-Ki Park C and Il-Keun Kong A B F
+ Author Affiliations
- Author Affiliations

A Department of Animal Science, Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea.

B Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea.

C Animal Biotechnology Division, National Institute of Animal Science, Suwon 441-706, Gyeonggi-Do, Republic of Korea.

D Dairy Science Division, National Institute of Animal Science, Cheonan 331-801, Chungcheongnam-Do, Republic of Korea.

E Present address: Department of Infertility Institute Clinical Laboratory, Saewha Hospital, Busan 607-843, Republic of Korea.

F Corresponding author. Email: ikong7900@gmail.com

Reproduction, Fertility and Development 28(3) 278-285 https://doi.org/10.1071/RD14086
Submitted: 10 March 2014  Accepted: 18 May 2014   Published: 9 July 2014

Abstract

We compared the nuclear maturation status and gene-expression profiles of canine cumulus cells (CCs) derived from cumulus–oocyte complexes (COCs) that were spontaneously ovulated versus those that were matured in vitro. Cumulus–oocyte complexes were retrieved from uteri by surgical flushing (after spontaneous ovulation) or by ovariectomy follicle aspiration and in vitro maturation. The objective of Experiment 1 was to investigate the nuclear maturation status of in vivo- versus in vitro-matured oocytes. The objective of Experiment 2 was to compare gene-expression profiles of CCs derived from in vivo- versus in vitro-matured COCs. Genes analysed are related to cell maturation, development and apoptosis, including GDF9, MAPK1, PTX3, CX43, Bcl2 and BAX; mRNA expression for all of these genes, except for GDF9, differed (P < 0.05) between in vivo- and in vitro-matured CCs. In conclusion, we found that gene-expression profiles are related to the quality of CCs and therefore posit that monitoring gene expression could be a useful strategy to guide attempts to improve in vitro culture systems.

Additional keywords: development, dog, in vitro maturation, oogenesis, reproduction.


References

Adhikari, D., Liu, K., and Shen, Y. (2012). Cdk1 drives meiosis and mitosis through two different mechanisms. Cell Cycle 11, 2763–2764.
Cdk1 drives meiosis and mitosis through two different mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWgtL7N&md5=3a500512bd47ce4bbc76131e44af926fCAS | 22801537PubMed |

Adriaenssens, T., Segers, I., Wathlet, S., and Smitz, J. (2011). The cumulus cell gene-expression profile of oocytes with different nuclear maturity and potential for blastocyst formation. J. Assist. Reprod. Genet. 28, 31–40.
The cumulus cell gene-expression profile of oocytes with different nuclear maturity and potential for blastocyst formation.Crossref | GoogleScholarGoogle Scholar | 20859762PubMed |

Albertini, D. F., Combelles, C. M., Benecchi, E., and Carabatsos, M. J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–653.
Cellular basis for paracrine regulation of ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVaisbY%3D&md5=7569099776287372934728c14c3cdb09CAS | 11427152PubMed |

Apparicio, M., Alves, A. E., Pires-Butler, E. A., Ribeiro, A. P., Covizzi, G. J., and Vicente, W. R. (2011). Effects of hormonal supplementation on nuclear maturation and cortical granule distribution of canine oocytes during various reproductive stages. Reprod. Domest. Anim. 46, 896–903.
Effects of hormonal supplementation on nuclear maturation and cortical granule distribution of canine oocytes during various reproductive stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemtrrE&md5=44874d77e84a3c0085d1c7b6200fb209CAS | 21352384PubMed |

Assou, S., Anahory, T., Pantesco, V., Le Carrour, T., Pellestor, F., Klein, B., Reyftmann, L., Dechaud, H., De Vos, J., and Hamamah, S. (2006). The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–1719.
The human cumulus–oocyte complex gene-expression profile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Ont7s%3D&md5=e28bd806130527e3e68de9ffb5f2ec23CAS | 16571642PubMed |

Bukowska, D., Kempisty, B., Piotrowska, H., Zawierucha, P., Brussow, K. P., Jaskowski, J. M., and Nowicki, M. (2012). The in vitro culture supplements and selected aspects of canine oocytes maturation. Pol. J. Vet. Sci. 15, 199–205.
The in vitro culture supplements and selected aspects of canine oocytes maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVSnsr8%3D&md5=4fd2126a4d3eb5f9c5621883d79d5144CAS | 22708378PubMed |

Conti, M. (2002). Specificity of the cyclic adenosine 3′,5′-monophosphate signal in granulosa cell function. Biol. Reprod. 67, 1653–1661.
Specificity of the cyclic adenosine 3′,5′-monophosphate signal in granulosa cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVelsrc%3D&md5=48ca6d575817fd7da8f0dcf715d4fdf7CAS | 12444038PubMed |

D’Alessandris, C., Canipari, R., Di Giacomo, M., Epifano, O., Camaioni, A., Siracusa, G., and Salustri, A. (2001). Control of mouse cumulus cell–oocyte complex integrity before and after ovulation: plasminogen activator synthesis and matrix degradation. Endocrinology 142, 3033–3040.
Control of mouse cumulus cell–oocyte complex integrity before and after ovulation: plasminogen activator synthesis and matrix degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksleltro%3D&md5=e4a425533f92091346261233e1a7c2ecCAS | 11416025PubMed |

Deb, G. K., Dey, S. R., Bang, J. I., Cho, S. J., Park, H. C., Lee, J. G., and Kong, I. K. (2011). 9-Cis retinoic acid improves developmental competence and embryo quality during in vitro maturation of bovine oocytes through the inhibition of oocyte tumour necrosis factor-alpha gene expression. J. Anim. Sci. 89, 2759–2767.
9-Cis retinoic acid improves developmental competence and embryo quality during in vitro maturation of bovine oocytes through the inhibition of oocyte tumour necrosis factor-alpha gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWqtrjE&md5=a08fa2ef190535cb31da3471e3709f2fCAS | 21478451PubMed |

De los Reyes, M., Palomino, J., Parraguez, V. H., Hidalgo, M., and Saffie, P. (2011). Mitochondrial distribution and meiotic progression in canine oocytes during in vivo and in vitro maturation. Theriogenology 75, 346–353.
Mitochondrial distribution and meiotic progression in canine oocytes during in vivo and in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M%2FlsFeisw%3D%3D&md5=53c333a7573a3b79cff72a47892d53ceCAS | 21074834PubMed |

De los Reyes, M., Palomino, J., Jofré, S., Villarroel, A., and Moreno, R. (2012). Golgi apparatus and endoplasmic reticulum dynamic during meiotic development in canine oocytes. Reprod. Domest. Anim. 47, 93–97.
Golgi apparatus and endoplasmic reticulum dynamic during meiotic development in canine oocytes.Crossref | GoogleScholarGoogle Scholar | 23279474PubMed |

De los Reyes, M., Rojas, C., Parraguez, V. H., and Palomino, J. (2013). Expression of growth differentiation factor 9 (GDF-9) during in vitro maturation in canine oocytes. Theriogenology 80, 587–596.
Expression of growth differentiation factor 9 (GDF-9) during in vitro maturation in canine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rtrzL&md5=558d357544459727c1ec81bed3a02e63CAS | 23849650PubMed |

Dragovic, R. A., Ritter, L. J., Schulz, S. J., Amato, F., Armstrong, D. T., and Gilchrist, R. B. (2005). Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology 146, 2798–2806.
Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslehsrg%3D&md5=7e2d4bc68290e5a21f973a0bf3db1643CAS | 15761035PubMed |

Edry, I., Sela-Abramovich, S., and Dekel, N. (2006). Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle. Mol. Cell. Endocrinol. 252, 102–106.
Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlajs7c%3D&md5=7fb6289df89a7096eb442005b50fc2b6CAS | 16647194PubMed |

Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–351.
Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF287lsVagsg%3D%3D&md5=c5204ba8baa74de5f5e682beac2e079dCAS | 4957259PubMed |

Elvin, J. A., Clark, A. T., Wang, P., Wolfman, N. M., and Matzuk, M. M. (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13, 1035–1048.
Paracrine actions of growth differentiation factor-9 in the mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1yns7c%3D&md5=5a5888f9786f0d703e4e420eff0139c8CAS | 10379900PubMed |

Eppig, J. J., Schultz, R. M., O’Brien, M., and Chesnel, F. (1994). Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev. Biol. 164, 1–9.
Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3pvFSjtA%3D%3D&md5=e8ac826ca4b55d302b6f02b49714d9daCAS | 8026614PubMed |

Fauser, B. C., Diedrich, K., Bouchard, P., Dominguez, F., Matzuk, M., Franks, S., Hamamah, S., Simon, C., Devroey, P., Ezcurra, D., and Howles, C. M. (2011). Contemporary genetic technologies and female reproduction. Evian Annual Reproduction (EVAR) Workshop Group 2010 Hum. Reprod. Update 17, 829–847.
| 1:STN:280:DC%2BC3MbpvFantQ%3D%3D&md5=12ee2a8f4ec446db63e80e3441f75595CAS | 21896560PubMed |

Feuerstein, P., Cadoret, V., Dalbies-Tran, R., Guerif, F., Bidault, R., and Royere, D. (2007). Gene expression in human cumulus cells: one approach to oocyte competence. Hum. Reprod. 22, 3069–3077.
Gene expression in human cumulus cells: one approach to oocyte competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKltLjP&md5=8bcb7a8d059f4d7d63ae3130604f9a6bCAS | 17951581PubMed |

Gershon, E., Plaks, V., and Dekel, N. (2008). Gap junctions in the ovary: expression, localisation and function. Mol. Cell. Endocrinol. 282, 18–25.
Gap junctions in the ovary: expression, localisation and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVegt7s%3D&md5=c23097b092f68584ba6edfa6c215adc0CAS | 18162286PubMed |

Gilchrist, R. B. (2011). Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod. Fertil. Dev. 23, 23–31.
Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 21366977PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82-83, 431–446.
Oocyte–somatic cell interactions during follicle development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVCitLo%3D&md5=6f6e01045ad5886adc2a184a56efe961CAS | 15271471PubMed |

Gilchrist, R. B., Ritter, L. J., Myllymaa, S., Kaivo-Oja, N., Dragovic, R. A., Hickey, T. E., Ritvos, O., and Mottershead, D. G. (2006). Molecular basis of oocyte paracrine signalling that promotes granulosa cell proliferation. J. Cell Sci. 119, 3811–3821.
Molecular basis of oocyte paracrine signalling that promotes granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt7vJ&md5=272b839e363e70365d4469d6391993b1CAS | 16926195PubMed |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=135f5950fb7808b3facf089971dfc6a0CAS | 18175787PubMed |

Gittens, J. E., and Kidder, G. M. (2005). Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J. Cell Sci. 118, 5071–5078.
Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ynsbbO&md5=f39626e0adb09b2e7022acf395e10cdfCAS | 16254245PubMed |

Hashimoto, O., Takagi, R., Yanuma, F., Doi, S., Shindo, J., Endo, H., Hasegawa, Y., and Shimasaki, S. (2012). Identification and characterisation of canine growth differentiation factor-9 and its splicing variant. Gene 499, 266–272.
Identification and characterisation of canine growth differentiation factor-9 and its splicing variant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVGks7s%3D&md5=1d44eb712ef149c3b255e086f4ec265eCAS | 22446043PubMed |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=71838bf836e236436aa5479298c8d51dCAS | 16854407PubMed |

Ikeda, S., Imai, H., and Yamada, M. (2003). Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 125, 369–376.
Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVWqtLk%3D&md5=756c31818b5f4e02821fa802bf275f19CAS | 12611600PubMed |

Jang, G., Kim, M. K., Oh, H. J., Hossein, M. S., Fibrianto, Y. H., Hong, S. G., Park, J. E., Kim, J. J., Kim, H. J., Kang, S. K., Kim, D. Y., and Lee, B. C. (2007). Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology 67, 941–947.
Birth of viable female dogs produced by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7hsVKkuw%3D%3D&md5=476fcb7f8dbdbe6e56d7c57305e71f13CAS | 17169419PubMed |

Kaláb, P., Sršeň, V., Farstad, W., Krogenaes, A., Motlík, J., and Hafne, A.-L. (1997). MAP kinase activation and Raf-1 synthesis in blue fox oocytes is controlled by cumulus granulosa cells. Theriogenology 47, 400.
MAP kinase activation and Raf-1 synthesis in blue fox oocytes is controlled by cumulus granulosa cells.Crossref | GoogleScholarGoogle Scholar |

Kempisty, B., Wozna, M., Piotrowska, H., Bukowska, D., Jackowska, M., Antosik, P., Jaskowski, J. M., and Brussow, K. P. (2012). The expression of genes encoding zona pellucida glycoproteins in canine cumulus–oocyte complexes cultured in vitro in media supplemented with progesterone and oestradiol. Theriogenology 77, 684–693.
The expression of genes encoding zona pellucida glycoproteins in canine cumulus–oocyte complexes cultured in vitro in media supplemented with progesterone and oestradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVarsA%3D%3D&md5=ad564c3ed69126d2a8fa78842d552367CAS | 22115812PubMed |

Kempisty, B., Ziółkowska, A., Piotrowska, H., Zawierucha, P., Antosik, P., Bukowska, D., Ciesiółka, S., Jaśkowski, J. M., Brüssow, K. P., Nowicki, M., and Zabel, M. (2013). Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43. Theriogenology 80, 411–420.
Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKrt7rE&md5=633129b181ad57ce6a728467bcb9b7daCAS | 23827822PubMed |

Kim, M. K., Fibrianto, Y. H., Oh, H. J., Jang, G., Kim, H. J., Lee, K. S., Kang, S. K., Lee, B. C., and Hwang, W. S. (2005). Effects of oestradiol-17beta and progesterone supplementation on in vitro nuclear maturation of canine oocytes. Theriogenology 63, 1342–1353.
Effects of oestradiol-17beta and progesterone supplementation on in vitro nuclear maturation of canine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslWntbY%3D&md5=76080bfbcd88b18cddf6bd2777a23dfeCAS | 15725442PubMed |

Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Hossein, M. S., Kim, J. J., Kang, S. K., Schatten, G., and Hwang, W. S. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.
Dogs cloned from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFentLY%3D&md5=e109e37ddd0a2d0ebba51fb4e11db592CAS | 16079832PubMed |

Leon, P. M., Campos, V. F., Kaefer, C., Begnini, K. R., McBride, A. J., Dellagostin, O. A., Seixas, F. K., Deschamps, J. C., and Collares, T. (2013). Expression of apoptotic genes in immature and in vitro-matured equine oocytes and cumulus cells. Zygote 21, 279–285.
Expression of apoptotic genes in immature and in vitro-matured equine oocytes and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFeksLs%3D&md5=b061327a3e34af2d8cdc49bdf26a79bcCAS | 21933470PubMed |

Liang, S., Kang, J., Jin, H., Liu, X., Li, J., Li, S., Lu, Y., Wang, W., and Yin, X. J. (2012). The influence of 9-cis-retinoic acid on nuclear and cytoplasmic maturation and gene expression in canine oocytes during in vitro maturation. Theriogenology 77, 1198–1205.
The influence of 9-cis-retinoic acid on nuclear and cytoplasmic maturation and gene expression in canine oocytes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1alt7g%3D&md5=608063968445fce5824b9077f92d7c25CAS | 22225683PubMed |

Lopes, G., Alves, M. G., Carvalho, R. A., Luvoni, G. C., and Rocha, A. (2011). DNA fragmentation in canine oocytes after in vitro maturation in TCM-199 medium supplemented with different proteins. Theriogenology 76, 1304–1312.
DNA fragmentation in canine oocytes after in vitro maturation in TCM-199 medium supplemented with different proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2htbfP&md5=99003857e33ea13be42e005bf145e2a2CAS | 21777970PubMed |

Otoi, T., Willingham, L., Shin, T., Kraemer, D. C., and Westhusin, M. (2002). Effects of oocyte culture density on meiotic competence of canine oocytes. Reproduction 124, 775–781.
Effects of oocyte culture density on meiotic competence of canine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVWiug%3D%3D&md5=e008d1a72120f4b0a8d6892244313e15CAS | 12530915PubMed |

Otoi, T., Shin, T., Kraemer, D. C., and Westhusin, M. E. (2007). Role of cumulus cells on in vitro maturation of canine oocytes. Reprod. Domest. Anim. 42, 184–189.
Role of cumulus cells on in vitro maturation of canine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7kvF2qsA%3D%3D&md5=68f5250979054fa1fae1c5f2b011b0c5CAS | 17348976PubMed |

Ouandaogo, Z. G., Frydman, N., Hesters, L., Assou, S., Haouzi, D., Dechaud, H., Frydman, R., and Hamamah, S. (2012). Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 27, 2438–2447.
Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFantrfJ&md5=80ae9578da333a87a21f484f07cd6a83CAS | 22617121PubMed |

Phillips, D. M., and Dekel, N. (1991). Maturation of the rat cumulus–oocyte complex: structure and function. Mol. Reprod. Dev. 28, 297–306.
Maturation of the rat cumulus–oocyte complex: structure and function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M7pslGjug%3D%3D&md5=53786484dd5089bd57eeef3c0e2dea36CAS | 2015090PubMed |

Reynaud, K., Fontbonne, A., Marseloo, N., Viaris de Lesegno, C., Saint-Dizier, M., and Chastant-Maillard, S. (2006). In vivo canine oocyte maturation, fertilisation and early embryogenesis: a review. Theriogenology 66, 1685–1693.
In vivo canine oocyte maturation, fertilisation and early embryogenesis: a review.Crossref | GoogleScholarGoogle Scholar | 16490243PubMed |

Reynaud, K., Chebrout, M., Tanguy-Dezaux, C., de la Villeon, G., and Chastant-Maillard, S. (2012). Chromatin patterns of immature canine oocytes after in vitro maturation. Reprod. Domest. Anim. 47, 70–73.
Chromatin patterns of immature canine oocytes after in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 23279469PubMed |

Richards, J. S. (2005). Ovulation: new factors that prepare the oocyte for fertilisation. Mol. Cell. Endocrinol. 234, 75–79.
Ovulation: new factors that prepare the oocyte for fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1SqtLk%3D&md5=3f03c4e39b56dba127263de81e0084feCAS | 15836955PubMed |

Rodrigues, B. A., Rodrigues, C. A., Salviano, M. B., Willhelm, B. R., Collares, F. J., and Rodrigues, J. L. (2013). Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%. Theriogenology 79, 1224–1228.
Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3srjtlWntQ%3D%3D&md5=3f372ea1c2f80bfea5f8349aedf8248fCAS | 23566669PubMed |

Rouhollahi Varnosfaderani, Sh., Ostadhosseini, S., Hajian, M., Hosseini, S. M., Khashouei, E. A., Abbasi, H., Hosseinnia, P., and Nasr-Esfahani, M. H. (2013). Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep. Theriogenology 80, 470–478.
Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpt1Crsr8%3D&md5=8e900131ed725373ede7255b512489dfCAS |

Salavati, M., Ghafari, F., Zhang, T., and Fouladi-Nashta, A. A. (2013). Influence of caffeine pretreatment on biphasic in vitro maturation of dog oocytes. Theriogenology 80, 784–792.
Influence of caffeine pretreatment on biphasic in vitro maturation of dog oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1aqsbzK&md5=bdb33e795e66e2d506dd868c72a44daaCAS | 23921184PubMed |

Salhab, M., Dhorne-Pollet, S., Auclair, S., Guyader-Joly, C., Brisard, D., Dalbies-Tran, R., Dupont, J., Ponsart, C., Mermillod, P., and Uzbekova, S. (2013). In vitro maturation of oocytes alters gene expression and signalling pathways in bovine cumulus cells. Mol. Reprod. Dev. 80, 166–182.
In vitro maturation of oocytes alters gene expression and signalling pathways in bovine cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eqs70%3D&md5=50aa2feb716350d7e7a72f23dcae4dd3CAS | 23280668PubMed |

Sasseville, M., Gagnon, M. C., Guillemette, C., Sullivan, R., Gilchrist, R. B., and Richard, F. J. (2009). Regulation of gap junctions in porcine cumulus–oocyte complexes: contributions of granulosa cell contact, gonadotrophins and lipid rafts. Mol. Endocrinol. 23, 700–710.
Regulation of gap junctions in porcine cumulus–oocyte complexes: contributions of granulosa cell contact, gonadotrophins and lipid rafts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCgtrk%3D&md5=4f4ad080b10a5c0855c2efca86842bb4CAS | 19228792PubMed |

Song, H. J., Kang, E. J., Maeng, G. H., Ock, S. A., Lee, S. L., Yoo, J. G., Jeon, B. G., and Rho, G. J. (2011). Influence of epidermal growth factor supplementation during in vitro maturation on nuclear status and gene expression of canine oocytes. Res. Vet. Sci. 91, 439–445.
Influence of epidermal growth factor supplementation during in vitro maturation on nuclear status and gene expression of canine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVahtbjJ&md5=9fe7fa44e737f80542b18eed693f58faCAS | 20888022PubMed |

Songsasen, N., and Wildt, D. E. (2007). Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim. Reprod. Sci. 98, 2–22.
Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Slu7Y%3D&md5=f45deea8f1356f1ed88caf84537af61cCAS | 17097840PubMed |

Su, Y. Q., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2002). Mitogen-activated protein kinase (MAPK) activity in cumulus cells is essential for gonadotrophin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology 143, 2221–2232.
Mitogen-activated protein kinase (MAPK) activity in cumulus cells is essential for gonadotrophin-induced oocyte meiotic resumption and cumulus expansion in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFKjtLY%3D&md5=220c002a7cf26558ed1edae78aecbce5CAS | 12021186PubMed |

Su, Y. Q., Denegre, J. M., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2003). Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex. Dev. Biol. 263, 126–138.
Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Gksrs%3D&md5=73339e4e8bb552a32cfbb0767c753adcCAS | 14568551PubMed |

Sugiura, K., and Eppig, J. J. (2005). Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Society for Reproductive Biology Founders’ Lecture 2005. Reprod. Fertil. Dev. 17, 667–674.
Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Society for Reproductive Biology Founders’ Lecture 2005.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKkt7%2FK&md5=4d404b0559097ead51e967498e9b340eCAS | 16364219PubMed |

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilisation. Mol. Reprod. Dev. 61, 414–424.
Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFCgtbk%3D&md5=95ae34ea2eaaaf29fff9fc7ea6ecb992CAS | 11835587PubMed |

Teilmann, S. C. (2005). Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary. Mol. Cell. Endocrinol. 234, 27–35.
Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1SqtLw%3D&md5=5b5d39583f69f4e144f780849a5df1e9CAS | 15836950PubMed |

Tsutsui, T. (1989). Gamete physiology and timing of ovulation and fertilisation in dogs. J. Reprod. Fertil. Suppl. 39, 269–275.
| 1:STN:280:DyaK3c7ls1agsw%3D%3D&md5=266d2e42890ae0b61a61e2b3cebf008bCAS | 2621728PubMed |

Turathum, B., Saikhun, K., Sangsuwan, P., and Kitiyanant, Y. (2010). Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod. Biol. Endocrinol. 8, 70–78.
| 20565987PubMed |

Vitt, U. A., McGee, E. A., Hayashi, M., and Hsueh, A. J. (2000). In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 141, 3814–3820.
| 1:CAS:528:DC%2BD3cXmvVGmtr8%3D&md5=1cd8ac32299af4ccbd6ae0a850bfb7d7CAS | 11014238PubMed |

Wert, S. E., and Larsen, W. J. (1990). Pre-endocytotic alterations in cumulus cell gap junctions precede meiotic resumption in the rat cumulus–oocyte complex. Tissue Cell 22, 827–851.
Pre-endocytotic alterations in cumulus cell gap junctions precede meiotic resumption in the rat cumulus–oocyte complex.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3itVehtQ%3D%3D&md5=f3f8d5fcb96b7dd92659f29b6c8e6345CAS | 2128665PubMed |

Yuan, Y. Q., Van Soom, A., Leroy, J. L., Dewulf, J., Van Zeveren, A., de Kruif, A., and Peelman, L. J. (2005). Apoptosis in cumulus cells, but not in oocytes, may influence bovine embryonic developmental competence. Theriogenology 63, 2147–2163.
Apoptosis in cumulus cells, but not in oocytes, may influence bovine embryonic developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyrtb8%3D&md5=7c40ac413f5ce3e90923926a535ba97eCAS | 15826680PubMed |

Zhang, M., Ouyang, H., and Xia, G. (2009). The signal pathway of gonadotrophin-induced mammalian oocyte meiotic resumption. Mol. Hum. Reprod. 15, 399–409.
The signal pathway of gonadotrophin-induced mammalian oocyte meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 19443606PubMed |