Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2

Kelly E. Beazley A and Maria Nurminskaya A B
+ Author Affiliations
- Author Affiliations

A Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 N Greene St, Baltimore, MD 21201, USA.

B Corresponding author. Email: mnurminskaya@som.umaryland.edu

Reproduction, Fertility and Development 28(7) 974-981 https://doi.org/10.1071/RD14155
Submitted: 14 May 2014  Accepted: 14 November 2014   Published: 5 January 2015

Abstract

Use of the dietary supplement quercetin is on the rise. Because previous studies imply an inhibitory effect of quercetin on male fertility, we explored the effects of this flavonoid on fertility in female mice. Birth outcomes, and ovarian morphology in 4-week-old offspring, were assessed in mice receiving dietary quercetin (5 mg kg–1 day–1) for 9 months during two breeding periods: from 2 to 6 months (prime reproductive age) and 8 to11 months of age. Quercetin increased birth spacing, leading to a 60% reduction in the number of litters, but enhanced folliculogenesis in ovaries of female offspring. While in young females quercetin caused an almost 70% increase in litter size, in older animals this effect was reversed. Consistent with the inhibitory activity of quercetin on the enzyme transglutaminase 2 (TG2), genetic ablation of TG2 in mice mirrors the effects of quercetin on birth outcomes and follicular development. Further, TG2-null mice lack responsiveness to quercetin ingestion. Our study shows for the first time that dietary quercetin can cause reduced reproductive potential in female mice and implies that TG2 may regulate ovarian ageing.

Additional keywords: fecundity, folliculogenesis, litter size, offspring, ovary.


References

Aravindakshan, M., Chauhan, P. S., and Sundaram, K. (1985). Studies on germinal effects of quercetin, a naturally occurring flavonoid. Mutat. Res. 144, 99–106.
Studies on germinal effects of quercetin, a naturally occurring flavonoid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvFWht74%3D&md5=af3c621629a345a55c9f4dedb4f060f3CAS | 4047077PubMed |

Beazley, K. E., Deasey, S., Lima, F., and Nurminskaya, M. V. (2012). Transglutaminase 2-mediated activation of beta-catenin signalling has a critical role in warfarin-induced vascular calcification. Arterioscler. Thromb. Vasc. Biol. 32, 123–130.
Transglutaminase 2-mediated activation of beta-catenin signalling has a critical role in warfarin-induced vascular calcification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1WksrzM&md5=a5b81386d3f36a82cd97e679945d9309CAS | 22034513PubMed |

Beazley, K. E., Banyard, D., Lima, F., Deasey, S. C., Nurminsky, D. I., Konoplyannikov, M., and Nurminskaya, M. V. (2013a). Transglutaminase inhibitors attenuate vascular calcification in a preclinical model. Arterioscler. Thromb. Vasc. Biol. 33, 43–51.
Transglutaminase inhibitors attenuate vascular calcification in a preclinical model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVeltrbO&md5=efab427ec4d9275f589c8f8c8b732c2cCAS | 23117658PubMed |

Beazley, K. E., Reckard, S., Nurminsky, D., Lima, F., and Nurminskaya, M. (2013b). Two sides of MGP-null arterial disease: chondrogenic lesions dependent on transglutaminase 2 and elastin fragmentation associated with induction of adipsin. J. Biol. Chem. 288, 31 400–31 408.
Two sides of MGP-null arterial disease: chondrogenic lesions dependent on transglutaminase 2 and elastin fragmentation associated with induction of adipsin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yiu7jM&md5=7d6427979d8f749a6d42785787828bacCAS |

Bennetts, L. E., De Iuliis, G. N., Nixon, B., Kime, M., Zelski, K., McVicar, C. M., Lewis, S. E., and Aitken, R. J. (2008). Impact of oestrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities. Mutat. Res. 641, 1–11.
Impact of oestrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslagtLw%3D&md5=4efa86eb134340e55601da6252db934bCAS | 18342339PubMed |

Chen, X., Yin, O. Q., Zuo, Z., and Chow, M. S. (2005). Pharmacokinetics and modelling of quercetin and metabolites. Pharm. Res. 22, 892–901.
Pharmacokinetics and modelling of quercetin and metabolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVKnuro%3D&md5=b593d4ede7c708f9e3ae5e923477e6cdCAS | 15948033PubMed |

Corega, C., Vaida, L., Festila, D. G., Rigoni, G., Albanese, M., D’Agostino, A., De, S. D., Pardo, A., Nocini, P. F., and Bertossi, D. (2014). The benefits of quercetin for dentistry and maxillofacial surgery: a systematic review. Minerva Stomatol. , .
| 24423744PubMed |

De Feo, V., Quaranta, E., Fedele, V., Claps, S., Rubino, R., and Pizza, C. (2006). Flavonoids and terpenoids in goat milk in relation to forage intake. Ital. J. Food Sci. 18, 85–92.
| 1:CAS:528:DC%2BD28XltFWqt7w%3D&md5=26dea9d89dbb551d6eac88b5f0265b6bCAS |

Edwards, R. L., Lyon, T., Litwin, S. E., Rabovsky, A., Symons, J. D., and Jalili, T. (2007). Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 137, 2405–2411.
| 1:CAS:528:DC%2BD2sXht1ynsb3K&md5=f609ee3394b9bd9718955e5b7eb20f71CAS | 17951477PubMed |

Egert, S., Bosy-Westphal, A., Seiberl, J., Kurbitz, C., Settler, U., Plachta-Danielzik, S., Wagner, A. E., Frank, J., Schrezenmeir, J., Rimbach, G., Wolffram, S., and Muller, M. J. (2009). Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 102, 1065–1074.
Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSkurjP&md5=1d8b6f6c0771b8d8d5248781ba8f3536CAS | 19402938PubMed |

Fan, H. Y., O’Connor, A., Shitanaka, M., Shimada, M., Liu, Z., and Richards, J. S. (2010). Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinisation. Mol. Endocrinol. 24, 1529–1542.
Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGktrzI&md5=f0e3637f0b6a4ad683d48c78b352a35aCAS | 20610534PubMed |

Faul, F., Erdfelder, E., Lang, A. G., and Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioural and biomedical sciences. Behav. Res. Methods 39, 175–191.
G*Power 3: a flexible statistical power analysis program for the social, behavioural and biomedical sciences.Crossref | GoogleScholarGoogle Scholar | 17695343PubMed |

Fu, X., Cheng, J., Hou, Y., and Zhu, S. (2013). The association between the oocyte pool and aneuploidy: a comparative study of the reproductive potential of young and aged mice. J. Assist. Reprod. Genet. 31, 323–331.
The association between the oocyte pool and aneuploidy: a comparative study of the reproductive potential of young and aged mice.Crossref | GoogleScholarGoogle Scholar | 24362910PubMed |

Fujimoto, M., Kanzaki, H., Nakayama, H., Higuchi, T., Hatayama, H., Iwai, M., Kaneko, Y., Mori, T., and Fujita, J. (1996). Requirement for transglutaminase in progesterone-induced decidualisation of human endometrial stromal cells. Endocrinology 137, 1096–1101.
| 1:CAS:528:DyaK28Xht1Kju7o%3D&md5=ca22940a233eb3d94412182b53be1970CAS | 8603579PubMed |

Harwood, M., Danielewska-Nikiel, B., Borzelleca, J. F., Flamm, G. W., Williams, G. M., and Lines, T. C. (2007). A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 45, 2179–2205.
A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWit7jN&md5=aae7abcb760e3794916ace8ca3a61131CAS | 17698276PubMed |

Hollman, P. C., van Trijp, J. M., Buysman, M. N., van der Gaag, M. S., Mengelers, M. J., de Vries, J. H., and Katan, M. B. (1997). Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 418, 152–156.
Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVOqur4%3D&md5=02a74b0e97788395d37bc3b87b76a375CAS | 9414116PubMed |

Huxley, R. R., and Neil, H. A. (2003). The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 57, 904–908.
The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Gjs7o%3D&md5=eea0655a982757656c82d689759c038fCAS | 12879084PubMed |

Johnson, J. R., Makaji, E., Ho, S., Boya, X., Crankshaw, D. J., and Holloway, A. C. (2009). Effect of maternal raspberry leaf consumption in rats on pregnancy outcome and the fertility of the female offspring. Reprod. Sci. 16, 605–609.
Effect of maternal raspberry leaf consumption in rats on pregnancy outcome and the fertility of the female offspring.Crossref | GoogleScholarGoogle Scholar | 19276407PubMed |

Kabir-Salmani, M., Shiokawa, S., Akimoto, Y., Sakai, K., Sakai, K., and Iwashita, M. (2005). Tissue transglutaminase at embryo–maternal interface. J. Clin. Endocrinol. Metab. 90, 4694–4702.
Tissue transglutaminase at embryo–maternal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWlu7g%3D&md5=4767e05da86288dd58b7e378a6f36c4aCAS | 15886239PubMed |

Kamel, H. H. (2013). Role of phyto-oestrogens in ovulation induction in women with polycystic ovarian syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 168, 60–63.
Role of phyto-oestrogens in ovulation induction in women with polycystic ovarian syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyntrY%3D&md5=94e6948252ad7f3f20cf4182b46ced00CAS | 23347605PubMed |

Khanduja, K. L., Verma, A., and Bhardwaj, A. (2001). Impairment of human sperm motility and viability by quercetin is independent of lipid peroxidation. Andrologia 33, 277–281.
Impairment of human sperm motility and viability by quercetin is independent of lipid peroxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslKnt7k%3D&md5=6fad85f1d3cd3ba9e4c1a7b170f6ef68CAS | 11683702PubMed |

Liu, Y., Kodithuwakku, S. P., Ng, P. Y., Chai, J., Ng, E. H., Yeung, W. S., Ho, P. C., and Lee, K. F. (2010). Excessive ovarian stimulation up-regulates the Wnt-signalling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum. Reprod. 25, 479–490.
Excessive ovarian stimulation up-regulates the Wnt-signalling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study.Crossref | GoogleScholarGoogle Scholar | 19955106PubMed |

Lorand, L., and Graham, R. M. (2003). Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140–156.
Transglutaminases: crosslinking enzymes with pleiotropic functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFaqtg%3D%3D&md5=01252deec4f44704f6ee74bdfba6c595CAS | 12563291PubMed |

Manach, C., Morand, C., Demigne, C., Texier, O., Regerat, F., and Remesy, C. (1997). Bioavailability of rutin and quercetin in rats. FEBS Lett. 409, 12–16.
Bioavailability of rutin and quercetin in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFyju7w%3D&md5=b41182c5667da9bdbb829cb88fdac552CAS | 9199494PubMed |

Özgör, B., and Selimoglu, M. A. (2010). Coeliac disease and reproductive disorders. Scand. J. Gastroenterol. 45, 395–402.
Coeliac disease and reproductive disorders.Crossref | GoogleScholarGoogle Scholar | 20017709PubMed |

Ranawat, P., Kaushik, G., Saikia, U. N., Pathak, C. M., and Khanduja, K. L. (2013). Quercetin impairs the reproductive potential of male mice. Andrologia 45, 56–65.
Quercetin impairs the reproductive potential of male mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGhs7k%3D&md5=aa79700851176bcf5984a035135ebec9CAS | 22640552PubMed |

Sak, K. (2014). Site-specific anti-cancer effects of dietary flavonoid quercetin. Nutr. Cancer 66, 177–193.
Site-specific anti-cancer effects of dietary flavonoid quercetin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslSjsw%3D%3D&md5=267c861cf26daa04cc4ea53c73f4b167CAS | 24377461PubMed |

Santoro, N. (2003). Mechanisms of premature ovarian failure. Ann. Endocrinol. (Paris) 64, 87–92.
| 1:CAS:528:DC%2BD3sXkslWqsL0%3D&md5=b54bcc3666d8a9f98557beaa00bcdc50CAS | 12773939PubMed |

Taepongsorat, L., Tangpraprutgul, P., Kitana, N., and Malaivijitnond, S. (2008). Stimulating effects of quercetin on sperm quality and reproductive organs in adult male rats. Asian J. Androl. 10, 249–258.
Stimulating effects of quercetin on sperm quality and reproductive organs in adult male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Oqt7w%3D&md5=175983a61353107ad6b4f66ffbe44e53CAS | 18097532PubMed |

Tulac, S., Nayak, N. R., Kao, L. C., Van, W. M., Huang, J., Lobo, S., Germeyer, A., Lessey, B. A., Taylor, R. N., Suchanek, E., and Giudice, L. C. (2003). Identification, characterisation and regulation of the canonical Wnt signalling pathway in human endometrium. J. Clin. Endocrinol. Metab. 88, 3860–3866.
Identification, characterisation and regulation of the canonical Wnt signalling pathway in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFOktbk%3D&md5=948fdc6f58a01558137d4d0d8dc19f1eCAS | 12915680PubMed |

Usongo, M., Rizk, A., and Farookhi, R. (2012). Beta-catenin/Tcf signalling in murine oocytes identifies non-ovulatory follicles. Reproduction 144, 669–676.
Beta-catenin/Tcf signalling in murine oocytes identifies non-ovulatory follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOitb%2FJ&md5=80ceb47f8feb33c21a3274ed735de92dCAS | 23006471PubMed |

Walle, T., Walle, U. K., and Halushka, P. V. (2001). Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr. 131, 2648–2652.
| 1:CAS:528:DC%2BD3MXnsFKktbg%3D&md5=9f763f065b129fa3e9fcd2c9830e5ad4CAS | 11584085PubMed |

Wetendorf, M., and DeMayo, F. J. (2012). The progesterone receptor regulates implantation, decidualisation and glandular development via a complex paracrine signalling network. Mol. Cell. Endocrinol. 357, 108–118.
The progesterone receptor regulates implantation, decidualisation and glandular development via a complex paracrine signalling network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Grtbo%3D&md5=9ed7b38145796f93c12cf1136acf13c2CAS | 22115959PubMed |

Wojcik, M., Burzynska-Pedziwiatr, I., and Wozniak, L. A. (2010). A review of natural and synthetic antioxidants important for health and longevity. Curr. Med. Chem. 17, 3262–3288.
A review of natural and synthetic antioxidants important for health and longevity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2rtbbM&md5=b9ceb0c9c8040437e5f79062193a4421CAS | 20666718PubMed |