Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Morphological and molecular characterisation of Twitcher mouse spermatogenesis: an update

Erica Puggioni A , Laura Governini A , Martina Gori A , Giuseppe Belmonte B , Paola Piomboni A , Elvira Costantino-Ceccarini A and Alice Luddi A C
+ Author Affiliations
- Author Affiliations

A Department of Molecular and Developmental Medicine, University of Siena, Viale Bracci, 53100 Siena, Italy.

B Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci, 53100 Siena, Italy.

C Corresponding author. Email: luddi@unisi.it

Reproduction, Fertility and Development 28(9) 1258-1267 https://doi.org/10.1071/RD14279
Submitted: 31 July 2014  Accepted: 27 December 2014   Published: 10 February 2015

Abstract

Spermatogenesis is a complex developmental program in which interactions between different cell types are finely regulated. Mouse models in which any of the sperm maturation steps are perturbed provide major insights into the molecular control of spermatogenesis. The Twitcher mouse is a model of Krabbe disease, characterised by the deficiency of galactosylceramidase, the enzyme that hydrolyses galactosylceramide and galactosylsphingosine. Galactosyl-alkyl-acyl-glycerol, a precursor of seminolipid, the most abundant glycolipid in spermatozoa, is also a substrate for galactosylceramidase. Altered sphingolipid metabolism has been suggested to be the cause of the morphological abnormalities reported previously in the spermatogenesis of Twitcher. However, given the frequency of infertility associated with neurological impairment, we hypothesised that an unbalanced hormonal profile could contribute to male infertility in this mutant. In order to clarify this issue, we investigated potential variations in the expression of hormones and hormone receptors involved in the regulation of spermatogenesis. Our data show that, in the brain of Twitcher mouse, gonadotrophin-releasing hormone (GnRH), LH and FSH gene expression is decreased, whereas expression of androgen receptor (AR) and inhibin βA (INHβA) is increased. The changes in gene expression for the LH and FSH receptors and AR in the testes support the hypothesis that altered sphingolipid metabolism is not the only cause of Twitcher infertility.

Additional keywords: gene expression, Krabbe disease.


References

Bruysters, M., Christin-Maitre, S., Verhoef-Post, M., Sultan, C., Auger, J., Faugeron, I., Larue, L., Lumbroso, S., Themmen, A. P., and Bouchard, P. (2008). A new LH receptor splice mutation responsible for male hypogonadism with subnormal sperm production in the propositus, and infertility with regular cycles in an affected sister. Hum. Reprod. 23, 1917–1923.
A new LH receptor splice mutation responsible for male hypogonadism with subnormal sperm production in the propositus, and infertility with regular cycles in an affected sister.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGqu7k%3D&md5=38da6e40ca00cdda39cb20ae109dd766CAS | 18508780PubMed |

Butler, A., He, X., Gordon, R. E., Wu, H. S., Gatt, S., and Schuchman, E. H. (2002). Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. Am. J. Pathol. 161, 1061–1075.
Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFOis7s%3D&md5=5f0c91c16d5697e4c4c32e298ae82b85CAS | 12213735PubMed |

Chen, Q., and Duan, E. K. (2011). Aquaporins in sperm osmoadaptation: an emerging role for volume regulation. Acta Pharmacol. Sin. 32, 721–724.
Aquaporins in sperm osmoadaptation: an emerging role for volume regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFyju7k%3D&md5=bc157cc74e9c12c2bb56792f51c165cdCAS | 21552294PubMed |

Cheng, C. Y., Wong, E. W., Yan, H. H., and Mruk, D. D. (2010). Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: new insights and advances. Mol. Cell. Endocrinol. 315, 49–56.
Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: new insights and advances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFymsLrP&md5=4c3ee387456d665b4c8f029804ba71f7CAS | 19682538PubMed |

Chigurupati, S., Son, T. G., Hyun, D. H., Lathia, J. D., Mughal, M. R., Savell, J., Li, S. C., Nagaraju, G. P., Chan, S. L., Arumugam, T. V., and Mattson, M. P. (2008). Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. J. Endocrinol. 199, 333–341.
Lifelong running reduces oxidative stress and degenerative changes in the testes of mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVClsb%2FM&md5=bb9d5c93ef3aeea147af05f7d3d86828CAS | 18701639PubMed |

Da Silva, N., Silberstein, C., Beaulieu, V., Pietrement, C., Van Hoek, A. N., Brown, D., and Breton, S. (2006). Postnatal expression of aquaporins in epithelial cells of the rat epididymis. Biol. Reprod. 74, 427–438.
Postnatal expression of aquaporins in epithelial cells of the rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kkuw%3D%3D&md5=3ba724455d1f6d7d38c85d4aa07113a1CAS | 16221990PubMed |

Deutsch, M. J., Schriever, S. C., Roscher, A. A., and Ensenauer, R. (2014). Digital image analysis approach for lipid droplet size quantitation of Oil Red O-stained cultured cells. Anal. Biochem. 445, 87–89.
Digital image analysis approach for lipid droplet size quantitation of Oil Red O-stained cultured cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2qu7jK&md5=d1e5ab5837a051a7845d69b39db2405bCAS | 24120410PubMed |

Fan, J., Akabane, H., Graham, S. N., Richardson, L. L., and Zhu, G. Z. (2006). Sperm defects in mice lacking a functional Niemann-Pick C1 protein. Mol. Reprod. Dev. 73, 1284–1291.
Sperm defects in mice lacking a functional Niemann-Pick C1 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSnu7s%3D&md5=0588e5963278b17396f93b78e70dec40CAS | 16850391PubMed |

Florio, P., Gazzolo, D., Luisi, S., and Petraglia, F. (2007). Activin A in brain injury. Adv. Clin. Chem. 43, 117–130.
Activin A in brain injury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1Cgtbo%3D&md5=89ec7e2eaf4a77b3f153358d59952831CAS | 17249382PubMed |

García-Ovejero, D., Veiga, S., Garcia-Segura, L. M., and Doncarlos, L. L. (2002). Glial expression of estrogen and androgen receptors after rat brain injury. J. Comp. Neurol. 450, 256–271.
Glial expression of estrogen and androgen receptors after rat brain injury.Crossref | GoogleScholarGoogle Scholar | 12209854PubMed |

Hermo, L., Schellenberg, M., Liu, L. Y., Dayanandan, B., Zhang, T., Mandato, C. A., and Smith, C. E. (2008). Membrane domain specificity in the spatial distribution of aquaporins 5, 7, 9, and 11 in efferent ducts and epididymis of rats. J. Histochem. Cytochem. 56, 1121–1135.
Membrane domain specificity in the spatial distribution of aquaporins 5, 7, 9, and 11 in efferent ducts and epididymis of rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaitb3O&md5=8fc8170b7332ad06e2050754d6bedda2CAS | 18796408PubMed |

Huo, S., Xu, Z., Zhang, X., Zhang, J., and Cui, S. (2010). Testicular denervation in prepuberty rat inhibits seminiferous tubule development and spermatogenesis. J. Reprod. Dev. 56, 370–378.
Testicular denervation in prepuberty rat inhibits seminiferous tubule development and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOhsLbO&md5=26bd09f154d4fb054f1858e9597dc6e0CAS | 20424380PubMed |

Ishizuka, I. (1997). Chemistry and functional distribution of sulfoglycolipids. Prog. Lipid Res. 36, 245–319.
Chemistry and functional distribution of sulfoglycolipids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVOku7o%3D&md5=226577fca5b59fa92c65312ca07d4ebcCAS | 9640458PubMed |

Ivell, R., Heng, K., and Anand-Ivell, R. (2014). Insulin-like factor 3 and the HPG axis in the male. Front. Endocrinol. (Lausanne) 5, 1–7.
Insulin-like factor 3 and the HPG axis in the male.Crossref | GoogleScholarGoogle Scholar |

Jamsai, D., and O’Bryan, M. K. (2011). Mouse models in male fertility research. Asian J. Androl. 13, 139–151.
Mouse models in male fertility research.Crossref | GoogleScholarGoogle Scholar | 21057516PubMed |

Kageyama, Y., Ishibashi, K., Hayashi, T., Xia, G., Sasaki, S., and Kihara, K. (2001). Expression of aquaporins 7 and 8 in the developing rat testis. Andrologia 33, 165–169.
Expression of aquaporins 7 and 8 in the developing rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1ylsbs%3D&md5=c1d0b5254824ef27e0f73f530280d792CAS | 11380332PubMed |

Kobayashi, T., Yamanaka, T., Jacobs, J. M., Teixeira, F., and Suzuki, K. (1980). The Twitcher mouse: an enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease). Brain Res. 202, 479–483.
The Twitcher mouse: an enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXivVCjtg%3D%3D&md5=e6f955cb7452137e569537415964668bCAS | 7437911PubMed |

Li, W. R., Chen, L., Chang, Z. J., Xin, H., Liu, T., Zhang, Y. Q., Li, G. Y., Zhou, F., Gong, Y. Q., Gao, Z. Z., and Xin, Z. C. (2011). Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J. Androl. 13, 881–888.
Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVarsbjO&md5=60aac53d6c191a6588da6798f754a342CAS | 21822295PubMed |

Luddi, A., Strazza, M., Carbone, M., Moretti, E., and Costantino-Ceccarini, E. (2005). Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy. Exp. Cell Res. 304, 59–68.
Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOmur8%3D&md5=45dd24d91318974f2ea3c5d687cab127CAS | 15707574PubMed |

McLachlan, R. I., O’Donnell, L., Meachem, S. J., Stanton, P. G., de Kretser, D. M., Pratis, K., and Robertson, D. M. (2002). Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog. Horm. Res. 57, 149–179.
Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Wqt7Y%3D&md5=1afaedc4a7383307cd950509bedf8534CAS | 12017541PubMed |

Michaelis, M., Langhammer, M., Hoeflich, A., Reinsch, N., Schoen, J., and Weitzel, J. M. (2013). Initial characterization of an outbreed mouse model for male factor (in)fertility. Andrology 1, 772–778.
Initial characterization of an outbreed mouse model for male factor (in)fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlensbnM&md5=8c618f5c13d5d20de94d479ac68c73f3CAS | 23843177PubMed |

Rafi, M. A., Rao, H. Z., Luzi, P., Curtis, M. T., and Wenger, D. A. (2012). Extended normal life after AAVrh10-mediated gene therapy in the mouse model of Krabbe disease. Mol. Ther. 20, 2031–2042.
Extended normal life after AAVrh10-mediated gene therapy in the mouse model of Krabbe disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbzE&md5=db4e14729fbcef18a1919ba9783419b8CAS | 22850681PubMed |

Ruwanpura, S. M., McLachlan, R. I., and Meachem, S. J. (2010). Hormonal regulation of male germ cell development. J. Endocrinol. 205, 117–131.
Hormonal regulation of male germ cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgs7s%3D&md5=69e8a9f7f304bf500246478de977ff22CAS | 20144980PubMed |

Sakai, N., Inui, K., Tatsumi, N., Fukushima, H., Nishigaki, T., Taniike, M., Nishimoto, J., Tsukamoto, H., Yanagihara, I., Ozono, K., and Okada, S. (1996). Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the Twitcher mouse, a model of Krabbe’s disease. J. Neurochem. 66, 1118–1124.
Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the Twitcher mouse, a model of Krabbe’s disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1OhsLs%3D&md5=cc4fe928060f46c9bdbf9774375fad6fCAS | 8769874PubMed |

Veeramachaneni, D. N., Smith, M. O., and Ellinwood, N. M. (1998). Deficiency of fucosidase results in acrosomal dysgenesis and impaired sperm maturation. J. Androl. 19, 444–449.
| 1:CAS:528:DyaK1cXlvVyrsbs%3D&md5=a1d06685e92d7cbfb74eb2c17d0ca19dCAS | 9733147PubMed |

Wang, H., Wang, H., Xiong, W., Chen, Y., Ma, Q., Ma, J., Ge, Y., and Han, D. (2006). Evaluation on the phagocytosis of apoptotic spermatogenic cells by Sertoli cells in vitro through detecting lipid droplet formation by Oil Red O staining. Reproduction 132, 485–492.
Evaluation on the phagocytosis of apoptotic spermatogenic cells by Sertoli cells in vitro through detecting lipid droplet formation by Oil Red O staining.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt7zM&md5=132d98c2b0807b239e621d07da7615cfCAS | 16940289PubMed |

Xu, H., Kongmanas, K., Kadunganattil, S., Smith, C. E., Rupar, T., Goto-Inoue, N., Hermo, L., Faull, K. F., and Tanphaichitr, N. (2011). Arylsulfatase A deficiency causes seminolipid accumulation and a lysosomal storage disorder in Sertoli cells. J. Lipid Res. 52, 2187–2197.
Arylsulfatase A deficiency causes seminolipid accumulation and a lysosomal storage disorder in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaktL3J&md5=9df92559e5e16c664445a977d6502c61CAS | 21965315PubMed |

Zhang, F. P., Poutanen, M., Wilbertz, J., and Huhtaniemi, I. (2001). Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol. Endocrinol. 15, 172–183.
Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVKmuw%3D%3D&md5=736e48c143d67e6b2671ead6b43510daCAS | 11145748PubMed |

Zipf, W. B., Payne, A. H., and Kelch, R. P. (1978). Prolactin, growth hormone, and luteinizing hormone in the maintenance of testicular luteinizing hormone receptors. Endocrinology 103, 595–600.
Prolactin, growth hormone, and luteinizing hormone in the maintenance of testicular luteinizing hormone receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlt1ensb4%3D&md5=9ee4cbb7085ebe718b3533d0a0079a9aCAS | 217652PubMed |