Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE (Open Access)

Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis

Bethany K. Redel A , Kimberly J. Tessanne A , Lee D. Spate A , Clifton N. Murphy A and Randall S. Prather A B
+ Author Affiliations
- Author Affiliations

A Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA.

B Corresponding author. Email: pratherr@missouri.edu

Reproduction, Fertility and Development 27(4) 655-666 https://doi.org/10.1071/RD14293
Submitted: 9 August 2014  Accepted: 14 February 2015   Published: 13 March 2015

Journal Compilation © CSIRO Publishing 2015 Open Access CC BY-NC-ND

Abstract

Culture systems promote development at rates lower than the in vivo environment. Here, we evaluated the embryo’s transcriptome to determine what the embryo needs during development. A previous mRNA sequencing endeavour found upregulation of solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 (SLC7A1), an arginine transporter, in in vitro- compared with in vivo-cultured embryos. In the present study, we added different concentrations of arginine to our culture medium to meet the needs of the porcine embryo. Increasing arginine from 0.12 to 1.69 mM improved the number of embryos that developed to the blastocyst stage. These blastocysts also had more total nuclei compared with controls and, specifically, more trophectoderm nuclei. Embryos cultured in 1.69 mM arginine had lower SLC7A1 levels and a higher abundance of messages involved with glycolysis (hexokinase 1, hexokinase 2 and glutamic pyruvate transaminase (alanine aminotransferase) 2) and decreased expression of genes involved with blocking the tricarboxylic acid cycle (pyruvate dehydrogenase kinase, isozyme 1) and the pentose phosphate pathway (transaldolase 1). Expression of the protein arginine methyltransferase (PRMT) genes PRMT1, PRMT3 and PRMT5 throughout development was not affected by arginine. However, the dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2 message was found to be differentially regulated through development, and the DDAH2 protein was localised to the nuclei of blastocysts. Arginine has a positive effect on preimplantation development and may be affecting the nitric oxide–DDAH–PRMT axis.

Additional keywords: amino acid, arginine transporter, culture, gene expression, metabolism, Warburg effect.


References

Amiri, I., Sobhani, A., Abolhassani, F., Omidinia, E., Akbari, M., and Farimani, M. (2003). The effect of nitric oxide on mouse pre-implantation embryo development and apoptosis. Iran. Biomed. J. 7, 107–111.
| 1:CAS:528:DC%2BD3sXnslSjtbY%3D&md5=b56cb8a9c0e4070f7cff808031dd58c3CAS |

Bauer, B. K., Isom, S. C., Spate, L. D., Whitworth, K. M., Spollen, W. G., Blake, S. M., Springer, G. K., Murphy, C. N., and Prather, R. S. (2010). Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos. Biol. Reprod. 83, 791–798.
Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls77F&md5=ad9de95e3893d28e4c956ec3b2b7c8e7CAS | 20668257PubMed |

Bazer, F. W., Kim, J., Song, G., Ka, H., Wu, G., Johnson, G. A., and Vallet, J. L. (2013). Roles of selected nutrients in development of the porcine conceptus during pregnancy. In: ‘Control of Pig Reproduction IX, Volume 68’. (Eds H. Rodriquez-Martinez, N. M. Soede, W. L. Flowers.) pp. 159–174. (Context Products Ltd: Leicestershire, UK.)

Beuster, G., Zarse, K., Kaleta, C., Thierbach, R., Kiehntopf, M., Steinberg, P., Schuster, S., and Ristow, M. (2011). Inhibition of alanine aminotransferase in silico and in vivo promotes mitochondrial metabolism to impair malignant growth. J. Biol. Chem. 286, 22 323–22 330.
Inhibition of alanine aminotransferase in silico and in vivo promotes mitochondrial metabolism to impair malignant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Kksb8%3D&md5=230b2d38f05fdde1a9b39a14cea056d5CAS |

Booth, P. J., Humpherson, P. G., Watson, T. J., and Leese, H. J. (2005). Amino acid depletion and appearance during porcine preimplantation embryo development in vitro. Reproduction 130, 655–668.
Amino acid depletion and appearance during porcine preimplantation embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OnsLjP&md5=204e201fdd3ad49395e949e6677737a3CAS | 16264095PubMed |

Booth, P. J., Watson, T. J., and Leese, H. J. (2007). Prediction of porcine blastocyst formation using morphological, kinetic, and amino acid depletion and appearance criteria determined during the early cleavage of in vitro-produced embryos. Biol. Reprod. 77, 765–779.
Prediction of porcine blastocyst formation using morphological, kinetic, and amino acid depletion and appearance criteria determined during the early cleavage of in vitro-produced embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CnurfP&md5=b84d7960121baa7f3f8afdd9f09c169dCAS | 17652665PubMed |

Breckenridge, R. A., Kelly, P., Nandi, M., Vallance, P. J., Ohun, T. J., and Leiper, J. (2010). A role for Dimethylarginine Dimethylaminohydrolase 1 (DDAH1) in mammalian development. Int. J. Dev. Biol. 54, 215–220.
A role for Dimethylarginine Dimethylaminohydrolase 1 (DDAH1) in mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFWis7c%3D&md5=a76b682e37d941f388cf8e0053bdf87bCAS | 19757398PubMed |

Burgess, A., Vigneron, S., Brioudes, E., Labbe, J. C., Lorca, T., and Castro, A. (2010). Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc. Natl Acad. Sci. USA 107, 12 564–12 569.
Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1eiu7w%3D&md5=585e7b8c5a52d0e9f3a946c935bf39f1CAS |

Chen, Y., Li, Y., Zhang, P., Traverse, J. H., Hou, M., Xu, X., Kimoto, M., and Bache, R. J. (2005). Dimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts. Heart Circ. Physiol. 289, H2212–H2219.
Dimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CntL%2FN&md5=5b1a4becdb0a9b66ebcdfa861087485eCAS |

Cillero-Pastor, B., Mateos, J., Fernandez-Lopez, C., Oreiro, N., Ruiz-Romero, C., and Blanco, F. J. (2012). Dimethylarginine dimethylaminohydrolase 2, a newly identified mitochondrial protein modulating nitric oxide synthesis in normal human chondrocytes. Arthritis Rheum. 64, 204–212.
Dimethylarginine dimethylaminohydrolase 2, a newly identified mitochondrial protein modulating nitric oxide synthesis in normal human chondrocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12mtbrL&md5=32732f3f34465263629e4f8eae670bafCAS | 21898353PubMed |

Fleming, T. P., Kwong, W. Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., Miller, D. J., Watkins, A. J., and Eckert, J. J. (2004). The embryo and its future. Biol. Reprod. 71, 1046–1054.
The embryo and its future.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqtrg%3D&md5=a7b10ebbc94aeed769f1e48615b3860aCAS | 15215194PubMed |

Gao, H., Wu, G., Spencer, T. E., Johnson, G. A., and Bazer, F. W. (2009). Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol. Reprod. 80, 602–609.
Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1amtbc%3D&md5=68c1a4846431d60b4c33c9e1c23cff78CAS | 19038856PubMed |

Guertin, D. A., and Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer Cell 12, 9–22.
Defining the role of mTOR in cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVyqsr0%3D&md5=25b6af20a591a2c29aaf3ea5989919c0CAS | 17613433PubMed |

Hasegawa, K., Wakino, S., Tanaka, T., Kimoto, M., Tatematsu, S., Kanda, T., Yoshioka, K., Homma, K., Sugano, N., Kurabayashi, M., Saruta, T., and Hayashi, K. (2006). Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 1488–1494.
Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFyjtLY%3D&md5=59e83e1824a95388ebb91705e26e33d6CAS | 16574895PubMed |

Howell, J. J., and Manning, B. D. (2011). mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab. 22, 94–102.
mTOR couples cellular nutrient sensing to organismal metabolic homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFCqsrc%3D&md5=5b9f862287cffe53672d63212087be8cCAS | 21269838PubMed |

Humpherson, P. G., Leese, H. J., and Sturmey, R. G. (2005). Amino acid metabolism of the porcine blastocyst. Theriogenology 64, 1852–1866.
Amino acid metabolism of the porcine blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWhsLfE&md5=8291eb24cb72c74483622d31272bcbbcCAS | 15923030PubMed |

Khor, G. H., Froemming, G. R., Zain, R. B., Abraham, M. T., Omar, E., Tan, S. K., Tan, A. C., Vincent-Chong, V. K., and Thong, K. L. (2013). DNA methylation profiling revealed promoter hypermethylation-induced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma. Int. J. Med. Sci. 10, 1727–1739.
DNA methylation profiling revealed promoter hypermethylation-induced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlGktr8%3D&md5=84d12e649dafef94263c998287b070c5CAS | 24155659PubMed |

Kikuchi, K., Kashiwazaki, N., Noguchi, J., Shimada, A., Takahashi, R., Hirabayashi, M., Shino, M., Ueda, M., and Kaneko, H. (1999). Developmental competence, after transfer to recipients, of porcine oocytes matured, fertilized, and cultured in vitro. Biol. Reprod. 60, 336–340.
Developmental competence, after transfer to recipients, of porcine oocytes matured, fertilized, and cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotlyhtQ%3D%3D&md5=9ab97c8ddf02d6cc2d5686e6cbcb6657CAS | 9915999PubMed |

Kim, J. Y., Burghardt, R. C., Wu, G., Johnson, G. A., Spencer, T. E., and Bazer, F. W. (2011). Select nutrients in the ovine uterine lumen. VIII. Arginine stimulates proliferation of ovine trophectoderm cells through mTOR–RPS6K–RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol. Reprod. 84, 70–78.
Select nutrients in the ovine uterine lumen. VIII. Arginine stimulates proliferation of ovine trophectoderm cells through mTOR–RPS6K–RPS6 signaling cascade and synthesis of nitric oxide and polyamines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVegtbc%3D&md5=e1d4de181cd76733dc22d4e54d746c3fCAS | 20844281PubMed |

Kim, J., Song, G., Wu, G., Gao, H., Johnson, G. A., and Bazer, F. W. (2013). Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the mTOR–RPS6K–RPS6–EIF4EBP1 signal transduction pathway. Biol. Reprod. 88, 113.
Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the mTOR–RPS6K–RPS6–EIF4EBP1 signal transduction pathway.Crossref | GoogleScholarGoogle Scholar | 23486913PubMed |

Kong, X., Tan, B., Yin, Y., Gao, H., Li, X., Jaeger, L. A., Bazer, F. W., and Wu, G. (2012). l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J. Nutr. Biochem. 23, 1178–1183.
l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2rtbvJ&md5=c6dd16f201854fbc124b0fe2d28cda99CAS | 22137265PubMed |

Krisher, R. L., and Prather, R. S. (2012). A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.
A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFygs7Y%3D&md5=c0eff42a155facc9c59aef5762dc984fCAS | 22431437PubMed |

Krisher, R. L., Spate, L. D., Redel, B. K., Lee, K., Park, K.-W., Heuberger, A. L., Herrick, J. R., Schoolcraft, W. B., and Prather, R. S. (2014). Metabolomic profile of porcine blastocysts: Role of intracellular lipids and glutamine metabolism. Biol. Reprod. Suppl. 1, Abstract 420.

Lee, K., Redel, B. K., Spate, L., Teson, J., Brown, A. N., Park, K. W., Walters, E., Samuel, M., Murphy, C. N., and Prather, R. S. (2013). Piglets produced from cloned blastocysts cultured in vitro with GM-CSF. Mol. Reprod. Dev. 80, 145–154.
Piglets produced from cloned blastocysts cultured in vitro with GM-CSF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOis7w%3D&md5=5e7b8c50e202f0fb406a58d11c848a8cCAS | 23239239PubMed |

Li, R., Whitworth, K., Lai, L., Wax, D., Spate, L., Murphy, C. N., Rieke, A., Isom, C., Hao, Y., Zhong, Z., Katayama, M., Schatten, H., and Prather, R. S. (2007). Concentration and composition of free amino acids and osmolalities of porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos. Mol. Reprod. Dev. 74, 1228–1235.
Concentration and composition of free amino acids and osmolalities of porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1altb4%3D&md5=811b0f102e352fdccc26dbd639893085CAS | 17342727PubMed |

Macháty, Z., Day, B. N., and Prather, R. S. (1998). Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59, 451–455.
Development of early porcine embryos in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 9687321PubMed |

Manser, R. C., and Houghton, F. D. (2006). Ca2+-linked upregulation and mitochondrial production of nitric oxide in the mouse preimplantation embryo. J. Cell Sci. 119, 2048–2055.
Ca2+-linked upregulation and mitochondrial production of nitric oxide in the mouse preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFSmur8%3D&md5=143c135c6bd500d9a5bd5427f98c0eadCAS | 16638811PubMed |

Manser, R. C., Leese, H. J., and Houghton, F. D. (2004). Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol. Reprod. 71, 528–533.
Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgtbY%3D&md5=09d64c1d68b9f4f9672617a80c79ed41CAS | 15070826PubMed |

Palm, F., Onozato, M. L., Luo, Z., and Wilcox, C. S. (2007). Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems. Am. J. Physiol. Heart Circ. Physiol. 293, H3227–H3245.
Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOgtLfK&md5=4107a5cdf05854be22607a854f3cb0daCAS | 17933965PubMed |

Patra, K. C., Wang, Q., Bhaskar, P. T., Miller, L., Wang, Z., Wheaton, W., Chandel, N., Laakso, M., Muller, W. J., Allen, E. L., Jha, A. K., Smolen, G. A., Clasquin, M. F., Robey, R. B., and Hay, N. (2013). Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24, 213–228.
Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wrur%2FL&md5=bbbcc645a09b29391f9f896cb284254bCAS | 23911236PubMed |

Redel, B. K., Brown, A. N., Spate, L. D., Whitworth, K. M., Green, J. A., and Prather, R. S. (2012). Glycolysis in preimplantation development is partially controlled by the Warburg effect. Mol. Reprod. Dev. 79, 262–271.
Glycolysis in preimplantation development is partially controlled by the Warburg effect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12mtbfE&md5=4dec75f68c5037e3bf58f44f296fcc66CAS | 22213464PubMed |

Schwarz, K. R., Pires, P. R., de Bem, T. H., Adona, P. R., and Leal, C. L. (2010). Consequences of nitric oxide synthase inhibition during bovine oocyte maturation on meiosis and embryo development. Reprod. Domest. Anim. 45, 75–80.
Consequences of nitric oxide synthase inhibition during bovine oocyte maturation on meiosis and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislagurg%3D&md5=edb34ca046ba8f6a44740fcb04fbee67CAS | 20137060PubMed |

Scott, L., Lamb, J., Smith, S., and Wheatley, D. N. (2000). Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br. J. Cancer 83, 800–810.
Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFOhsLw%3D&md5=2921403ce7c015f658c66d0825b04581CAS | 10952786PubMed |

Spate, L. D., Whitworth, K. M., Walker, K. A., Bauer, B. K., Murphy, C. N., and Prather, R. S. (2010). Low-density lipoprotein (LDL) receptor mRNA and protein may enable LDL to replace bovine serum albumin during the in vitro swine embryo development. Mol. Reprod. Dev. 77, 298.
| 1:CAS:528:DC%2BC3cXisFemtrg%3D&md5=82d4f11ecb27ec7483876d85a6818033CAS | 20017142PubMed |

Tesfaye, D., Kadanga, A., Rings, F., Bauch, K., Jennen, D., Nganvongpanit, K., Holker, M., Tholen, E., Ponsuksili, S., Wimmers, K., Montag, M., Gilles, M., Kirfel, G., Herzog, V., and Schellander, K. (2006). The effect of nitric oxide inhibition and temporal expression patterns of the mRNA and protein products of nitric oxide synthase genes during in vitro development of bovine pre-implantation embryos. Reprod. Domest. Anim. 41, 501–509.
The effect of nitric oxide inhibition and temporal expression patterns of the mRNA and protein products of nitric oxide synthase genes during in vitro development of bovine pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslKqug%3D%3D&md5=0f752aae85d1aea5cc21d9a9d6ccaed0CAS | 17107508PubMed |

Tomikawa, J., Fukatsu, K., Tanaka, S., and Shiota, K. (2006). DNA methylation-dependent epigenetic regulation of dimethylarginine dimethylaminohydrolase 2 gene in trophoblast cell lineage. J. Biol. Chem. 281, 12 163–12 169.
DNA methylation-dependent epigenetic regulation of dimethylarginine dimethylaminohydrolase 2 gene in trophoblast cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjslentr4%3D&md5=6ec17890f97cf59bb8e594716015afccCAS |

Tran, C. T., Leiper, J. M., and Vallance, P. (2003). The DDAH/ADMA/NOS pathway. Atheroscler. Suppl. 4, 33–40.
The DDAH/ADMA/NOS pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Gmtbk%3D&md5=14d0d22700f7bae57270019df2c0023dCAS | 14664901PubMed |

Tranguch, S., Steuerwald, N., and Huet-Hudson, Y. M. (2003). Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development. Biol. Reprod. 68, 1538–1544.
Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12lsb8%3D&md5=b469b4cb326f2ffc94e60af294c512efCAS | 12606428PubMed |

Van Winkle, L. J. (2001). Amino acid transport regulation and early embryo development. Biol. Reprod. 64, 1–12.
Amino acid transport regulation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFCntw%3D%3D&md5=6e1e60cefe3aaba9ef7c362b782241d0CAS | 11133652PubMed |

Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.
Understanding the Warburg effect: the metabolic requirements of cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKlsbg%3D&md5=e7d3918336fa1c261eea67a2a87ee7a6CAS | 19460998PubMed |

Wang, X., Frank, J. W., Little, D. R., Dunlap, K. A., Satterfield, M. C., Burghardt, R. C., Hansen, T. R., Wu, G., and Bazer, F. W. (2014a). Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm. FASEB J. 28, 2852–2863.
Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFaltb%2FL&md5=96e047b4906e88155d9ec23fdc6e7688CAS | 24627544PubMed |

Wang, X., Frank, J. W., Xu, J., Dunlap, K. A., Satterfield, M. C., Burghardt, R. C., Romero, J. J., Hansen, T. R., Wu, G., and Bazer, F. W. (2014b). Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol. Reprod. 91, 59.
Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm.Crossref | GoogleScholarGoogle Scholar | 25061098PubMed |

Wang, S., Tsun, Z. Y., Wolfson, R. L., Shen, K., Wyant, G. A., Plovanich, M. E., Yuan, E. D., Jones, T. D., Chantranupong, L., Comb, W., Wang, T., Bar-Peled, L., Zoncu, R., Straub, C., Kim, C., Park, J., Sabatini, B. L., and Sabatini, D. M. (2015). Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194.
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitFelsA%3D%3D&md5=4acaaade92e115ac349826b9177e80d6CAS | 25567906PubMed |

Wheatley, D. N., and Campbell, E. (2003). Arginine deprivation, growth inhibition and tumour cell death: 3. Deficient utilisation of citrulline by malignant cells. Br. J. Cancer 89, 573–576.
Arginine deprivation, growth inhibition and tumour cell death: 3. Deficient utilisation of citrulline by malignant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsl2rsb0%3D&md5=98ddfdce106f45573f11b53bda42fe49CAS | 12888832PubMed |

Whitworth, K. M., Agca, C., Kim, J. G., Patel, R. V., Springer, G. K., Bivens, N. J., Forrester, L. J., Mathialagan, N., Green, J. A., and Prather, R. S. (2005). Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos. Biol. Reprod. 72, 1437–1451.
Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFGqsbg%3D&md5=235a3033584deb78449d8e37a2543005CAS | 15703372PubMed |

Wu, G. (2010). Functional amino acids in growth, reproduction, and health. Adv. Nutr. 1, 31–37.
Functional amino acids in growth, reproduction, and health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2lur8%3D&md5=392055ffbd1e1bd1efe6c7425701e3ceCAS | 22043449PubMed |

Wu, G., and Morris, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17.
| 1:CAS:528:DyaK1cXotVGltrs%3D&md5=bad9277b9b6f57e7f29b87c3822bec20CAS | 9806879PubMed |

Wu, G., Bazer, F. W., Burghardt, R. C., Johnson, G. A., Kim, S. W., Li, X. L., Satterfield, M. C., and Spencer, T. E. (2010). Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J. Anim. Sci. 88, E195–E204.
Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3pslOrsA%3D%3D&md5=1afd7cc51bb241bc8e49e165f76f3b17CAS | 19854987PubMed |

Yang, Y., and Bedford, M. T. (2013). Protein arginine methyltransferases and cancer. Nat. Rev. Cancer 13, 37–50.
Protein arginine methyltransferases and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVajur7I&md5=2ae806cadc66e541471eb5cfede2ac2eCAS | 23235912PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=561964c8beff5173933d7dff62eac0c9CAS | 11751272PubMed |

Yu, Z., Chen, T., Hebert, J., Li, E., and Richard, S. (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol. Cell. Biol. 29, 2982–2996.
A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVCqsLs%3D&md5=53fb85e03a6231bce1643222cc1f0bcfCAS | 19289494PubMed |

Zhang, X., Miao, Y., Zhao, J. G., Spate, L., Bennett, M. W., Murphy, C. N., Schatten, H., and Prather, R. S. (2010). Porcine oocytes denuded before maturation can develop to the blastocyst stage if provided a cumulous cell-derived coculture system. J. Anim. Sci. 88, 2604–2610.
Porcine oocytes denuded before maturation can develop to the blastocyst stage if provided a cumulous cell-derived coculture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVOrsbY%3D&md5=6dd9ab36f3e1a5d43b732b5c751f2440CAS | 20382876PubMed |

Zoncu, R., Efeyan, A., and Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35.
mTOR: from growth signal integration to cancer, diabetes and ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGqsbnK&md5=ab06aee63af527cd79d929f4c4dc986aCAS | 21157483PubMed |