Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of ovarian hormones on the healthy equine uterus: a global gene expression analysis

Christina D. Marth A C , Neil D. Young A , Lisa Y. Glenton A , Drew M. Noden B , Glenn F. Browning A and Natali Krekeler A
+ Author Affiliations
- Author Affiliations

A Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 250 Princes Highway, Werribee, Vic. 3030, Australia.

B Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA.

C Corresponding author. Email: christina.marth@unimelb.edu.au

Reproduction, Fertility and Development 28(11) 1810-1824 https://doi.org/10.1071/RD14513
Submitted: 24 December 2014  Accepted: 22 April 2015   Published: 20 May 2015

Abstract

The physiological changes associated with the varying hormonal environment throughout the oestrous cycle are linked to the different functions the uterus needs to fulfil. The aim of the present study was to generate global gene expression profiles for the equine uterus during oestrus and Day 5 of dioestrus. To achieve this, samples were collected from five horses during oestrus (follicle >35 mm in diameter) and dioestrus (5 days after ovulation) and analysed using high-throughput RNA sequencing techniques (RNA-Seq). Differentially expressed genes between the two cycle stages were further investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The expression of 1577 genes was found to be significantly upregulated during oestrus, whereas 1864 genes were expressed at significantly higher levels in dioestrus. Most genes upregulated during oestrus were associated with the extracellular matrix, signal interaction and transduction, cell communication or immune function, whereas genes expressed at higher levels in early dioestrus were most commonly associated with metabolic or transport functions, correlating well with the physiological functions of the uterus. These results allow for a more complete understanding of the hormonal influence on gene expression in the equine uterus by functional analysis of up- and downregulated genes in oestrus and dioestrus, respectively. In addition, a valuable baseline is provided for further research, including analyses of changes associated with uterine inflammation.

Additional keywords: dioestrus, endometrium, messenger RNA, oestrous cycle, oestrus, RNA-Seq, transcriptome.


References

Allen, W. R. (2001). Fetomaternal interactions and influences during equine pregnancy. Reproduction 121, 513–527.
Fetomaternal interactions and influences during equine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFKgs7c%3D&md5=93c7058be899b2ef62f0ac642013c7c4CAS | 11277870PubMed |

Allen, W. R., and Stewart, F. (2001). Equine placentation. Reprod. Fertil. Dev. 13, 623–634.
Equine placentation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383lvFyqtA%3D%3D&md5=1759061e8bd35dc86f45d65f66b3da34CAS | 11999314PubMed |

Allen, W. R., Brown, L., Wright, M., and Wilsher, S. (2007). Reproductive efficiency of flatrace and national hunt thoroughbred mares and stallions in England. Equine Vet. J. 39, 438–445.
Reproductive efficiency of flatrace and national hunt thoroughbred mares and stallions in England.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srovFyntA%3D%3D&md5=0d152f353e184f1d73221ddf392a21cbCAS | 17910269PubMed |

Aplin, J. D., Charlton, A. K., and Ayad, S. (1988). An immunohistochemical study of human endometrial extracellular matrix during the menstrual cycle and first trimester of pregnancy. Cell Tissue Res. 253, 231–240.
An immunohistochemical study of human endometrial extracellular matrix during the menstrual cycle and first trimester of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1czislyisw%3D%3D&md5=37aa4d7aabe9f215159fb201ab0b4432CAS | 3416340PubMed |

Arora, N., Sandford, J., Browning, G. F., Sandy, J. R., and Wright, P. J. (2006). A model for cystic endometrial hyperplasia/pyometra complex in the bitch. Theriogenology 66, 1530–1536.
A model for cystic endometrial hyperplasia/pyometra complex in the bitch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Oit70%3D&md5=869fc8f843412d936a717f623fc811b3CAS | 16620926PubMed |

Aupperle, H., Özgen, S., Schoon, H. A., Schoon, D., Hoppen, H. O., Sieme, H., and Tannapfel, A. (2000). Cyclical endometrial steroid hormone receptor expression and proliferation intensity in the mare. Equine Vet. J. 32, 228–232.
Cyclical endometrial steroid hormone receptor expression and proliferation intensity in the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3psVCltQ%3D%3D&md5=80ddfb11d61d5009123fe5778c13dc61CAS | 10836478PubMed |

Aurich, C. (2011). Reproductive cycles of horses. Anim. Reprod. Sci. 124, 220–228.
Reproductive cycles of horses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFWhtbk%3D&md5=16115c37fe37aba058a56272a2364cb6CAS | 21377299PubMed |

Ball, B. A., Little, T. V., Hillman, R. B., and Woods, G. L. (1986). Pregnancy rates at Days 2 and 14 and estimated embryonic loss rates prior to Day 14 in normal and subfertile mares. Theriogenology 26, 611–619.
Pregnancy rates at Days 2 and 14 and estimated embryonic loss rates prior to Day 14 in normal and subfertile mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvV2qsQ%3D%3D&md5=2d0e9096b6743dd8e03f51fc83e08137CAS | 16726227PubMed |

Battut, I., Colchen, S., Fieni, F., Tainturier, D., and Bruyas, J. F. (1997). Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation. Equine Vet. J. Suppl. 29, 60–62.
Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation.Crossref | GoogleScholarGoogle Scholar |

Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Einspanier, R., Wenigerkind, H., Vermehren, M., Blum, H., Sinowatz, F., and Wolf, E. (2005). Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. J. Mol. Endocrinol. 34, 889–908.
Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCisL8%3D&md5=1968a65b71fdbb8146a0ba5209e94b12CAS | 15956356PubMed |

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. (Stat. Method.) 57, 289–300.

Betteridge, K. J., Eaglesome, M. D., Mitchell, D., Flood, P., and Beriault, R. (1982). Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. J. Anat. 135, 191–209.
| 1:STN:280:DyaL3s%2FjtVGnsg%3D%3D&md5=b1c207986e14dc8fcdb102e9715d513bCAS | 7130052PubMed |

Borthwick, J. M., Charnock-Jones, D. S., Tom, B. D., Hull, M. L., Teirney, R., Phillips, S. C., and Smith, S. K. (2003). Determination of the transcript profile of human endometrium. Mol. Hum. Reprod. 9, 19–33.
Determination of the transcript profile of human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislSktrY%3D&md5=610cfd33dde1e640b32d1f232b746eccCAS | 12529417PubMed |

Burghardt, R. C., Burghardt, J. R., Taylor, J. D., Reeder, A. T., Nguen, B. T., Spencer, T. E., Bayless, K. J., and Johnson, G. A. (2009). Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal–conceptus interface and uterine wall during ovine pregnancy. Reproduction 137, 567–582.
Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal–conceptus interface and uterine wall during ovine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2ktrc%3D&md5=c9e98dfe6ec2861cb24a33806be5ada7CAS | 19060096PubMed |

Cannon, J. G. (1998). Adaptive interactions between cytokines and the hypothalamic–pituitary–gonadal axis. Ann. N. Y. Acad. Sci. 856, 234–242.
Adaptive interactions between cytokines and the hypothalamic–pituitary–gonadal axis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVCls7g%3D&md5=56a97b8074526638a1be6c5ca6e63f20CAS | 9917882PubMed |

Carlson, M., Falcon, S., Pages, H., and Li, N. (2007). GO.db: a set of annotation maps describing the entire Gene Ontology. In: ‘bioconductor.org. 2.8.0 edn’. (The Institue of Statistical Mathematics: Japan)

Curry, T. E., and Osteen, K. G. (2001). Cyclic changes in the matrix metalloproteinase system in the ovary and uterus. Biol. Reprod. 64, 1285–1296.
Cyclic changes in the matrix metalloproteinase system in the ovary and uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKru7w%3D&md5=a58f4557d0bb9624a1a8371d15120f02CAS | 11319131PubMed |

de Winter, P. J. J., Verdonck, M., de Kruif, A., Coryn, M., Deluyker, H. A., Devriese, L. A., and Haesebrouck, F. (1996). The relationship between the blood progesterone concentration at early metoestrus and uterine infection in the sow. Anim. Reprod. Sci. 41, 51–59.
The relationship between the blood progesterone concentration at early metoestrus and uterine infection in the sow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1ejtr8%3D&md5=892476c295efafaf6c6759fc30dd2e96CAS |

Evans, M. J., Hamer, J. M., Gason, L. M., Graham, C. S., Asbury, A. C., and Irvine, C. H. (1986). Clearance of bacteria and non-antigenic markers following intra-uterine inoculation into maiden mares: effect of steroid hormone environment. Theriogenology 26, 37–50.
Clearance of bacteria and non-antigenic markers following intra-uterine inoculation into maiden mares: effect of steroid hormone environment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvV2gtg%3D%3D&md5=5252976c4398f003fcd14a9f18a83275CAS | 16726168PubMed |

Frayne, J., and Stokes, C. (1994). MHC class II positive cells and T cells in the equine endometrium throughout the oestrous cycle. Vet. Immunol. Immunopathol. 41, 55–72.
MHC class II positive cells and T cells in the equine endometrium throughout the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvVSmt7s%3D&md5=67db58562b1cadfd022570727132dcdcCAS | 8066996PubMed |

Fumuso, E., Gigure, S., Wade, J., Rogan, D., Videla-Dorna, I., and Bowden, R. A. (2003). Endometrial IL-1 beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis: effects of estrous cycle, artificial insemination and immunomodulation. Vet. Immunol. Immunopathol. 96, 31–41.
Endometrial IL-1 beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis: effects of estrous cycle, artificial insemination and immunomodulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1KqtLk%3D&md5=626eae03ea8779b4062cb0f2ac837741CAS | 14522132PubMed |

Gebhardt, S., Merkl, N., Herbach, R., Wanke, J., Handler, S., and Bauersachs, S. (2012). Exploration of global gene expression changes during the estrous cycle in equine endometrium. Biol. Reprod. 87, 136.
Exploration of global gene expression changes during the estrous cycle in equine endometrium.Crossref | GoogleScholarGoogle Scholar | 23077167PubMed |

Geiger, B., and Yamada, K. M. (2011). Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol. 3, a005033.
Molecular architecture and function of matrix adhesions.Crossref | GoogleScholarGoogle Scholar | 21441590PubMed |

Gerstenberg, C., Allen, W. R., and Stewart, F. (1999). Cell proliferation patterns in the equine endometrium throughout the non-pregnant reproductive cycle. J. Reprod. Fertil. 116, 167–175.
Cell proliferation patterns in the equine endometrium throughout the non-pregnant reproductive cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVemsbc%3D&md5=dd189b527d26726d729a3dbffafabba9CAS | 10505067PubMed |

Ginther, O. J., Utt, M. D., Bergfelt, D. R., and Beg, M. A. (2006). Controlling interrelationships of progesterone/LH and estradiol/LH in mares. Anim. Reprod. Sci. 95, 144–150.
Controlling interrelationships of progesterone/LH and estradiol/LH in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFynu7g%3D&md5=f834a56540bde04232aa4cf6be38429aCAS | 16310986PubMed |

Ginther, O. J., Gastal, E. L., Gastal, M. O., Utt, M. D., and Beg, M. A. (2007). Luteal blood flow and progesterone production in mares. Anim. Reprod. Sci. 99, 213–220.
Luteal blood flow and progesterone production in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1GmsL4%3D&md5=5a5207728b30b97c52c08bb66510e828CAS | 16815650PubMed |

Hickey, D. K., Fahey, J. V., and Wira, C. R. (2013). Mouse estrous cycle regulation of vaginal versus uterine cytokines, chemokines, α-/β-defensins and TLRs. Innate Immun. 19, 121–131.
Mouse estrous cycle regulation of vaginal versus uterine cytokines, chemokines, α-/β-defensins and TLRs.Crossref | GoogleScholarGoogle Scholar | 22855555PubMed |

Horcajadas, J. A., Riesewijk, A., Martin, J., Cervero, A., Mosselman, S., Pellicer, A., and Simon, C. (2004). Global gene expression profiling of human endometrial receptivity. J. Reprod. Immunol. 63, 41–49.
Global gene expression profiling of human endometrial receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1WltLo%3D&md5=4e87f36a44f83506a64d91be09d45278CAS | 15284004PubMed |

Hynes, R. O., and Naba, A. (2012). Overview of the matrisome: an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903.
Overview of the matrisome: an inventory of extracellular matrix constituents and functions.Crossref | GoogleScholarGoogle Scholar | 21937732PubMed |

Johnson, C. A., Thompson, D. L., Kulinski, K. M., and Guitreau, A. M. (2000). Prolonged interovulatory interval and hormonal changes in mares following the use of Ovuplant™ to hasten ovulation. J. Equine Vet. Sci. 20, 331–336.
Prolonged interovulatory interval and hormonal changes in mares following the use of Ovuplant™ to hasten ovulation.Crossref | GoogleScholarGoogle Scholar |

Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30.
KEGG: Kyoto Encyclopedia of Genes and Genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGqu74%3D&md5=1f45e6d0bfb888d4871a38b96612e550CAS | 10592173PubMed |

Kaushic, C., Frauendorf, E., Rossoll, R. M., Richardson, J. M., and Wira, C. R. (1998). Influence of the estrous cycle on the presence and distribution of immune cells in the rat reproductive tract. Am. J. Reprod. Immunol. 39, 209–216.
Influence of the estrous cycle on the presence and distribution of immune cells in the rat reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7oslemug%3D%3D&md5=35e942f38f01d908d90d0876a3f12d76CAS | 9526610PubMed |

Kenney, R., and Doig, P. (1986). Equine endometrial biopsy. In ‘Current Therapy in Theriogenology: Diagnosis, Treatment, and Prevention of Reproductive Diseases in Small and Large Animals, Vol. 2.’ (Ed. D. Marrow.) pp. 723–729. (W. B. Saunders: Philadelphia.)

Kinsella, R. J., Kähäri, A., Haider, S., Zamora, J., Proctor, G., Spudich, G., Almeida-King, J., Staines, D., Derwent, P., Kerhornou, A., Kersey, P., and Flicek, P. (2011). Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011, bar030.
| 21785142PubMed |

Kotilainen, T., Huhtinen, M., and Katila, T. (1994). Sperm-induced leukocytosis in the equine uterus. Theriogenology 41, 629–636.
Sperm-induced leukocytosis in the equine uterus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVWktA%3D%3D&md5=faac9fef3479f32ab2335b10d23cd4c4CAS | 16727418PubMed |

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.
Fast gapped-read alignment with Bowtie 2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Oqt7c%3D&md5=623cd96e8b32acd232be4fb813842a60CAS | 22388286PubMed |

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Crossref | GoogleScholarGoogle Scholar | 19261174PubMed |

Lefranc, A.-C., and Allen, W. R. (2007). Influence of breed and oestrous cycle on endometrial gland surface density in the mare. Equine Vet. J. 39, 506–510.
Influence of breed and oestrous cycle on endometrial gland surface density in the mare.Crossref | GoogleScholarGoogle Scholar |

Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFajtLvM&md5=949129a1b8d287c57fbfbbba45beb59dCAS | 21816040PubMed |

Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., and Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 40, W622–W627.
RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCqsbw%3D&md5=03bc32997b06d924c02df37e81795596CAS | 22684630PubMed |

Mamo, S., Mehta, J. P., McGettigan, P., Fair, T., Spencer, T. E., Bazer, F. W., and Lonergan, P. (2011). RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation. Biol. Reprod. 85, 1143–1151.
RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShsLbO&md5=5fb51a79845f3282dd2de87af18012f1CAS | 21795669PubMed |

Mamo, S., Mehta, J. P., Forde, N., McGettigan, P., and Lonergan, P. (2012a). Conceptus–endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol. Reprod. 87, 6.
Conceptus–endometrium crosstalk during maternal recognition of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 22517619PubMed |

Mamo, S., Rizos, D., and Lonergan, P. (2012b). Transcriptomic changes in the bovine conceptus between the blastocyst stage and initiation of implantation. Anim. Reprod. Sci. 134, 56–63.
Transcriptomic changes in the bovine conceptus between the blastocyst stage and initiation of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamtLjL&md5=cc641b55032ee72944a7b99ed8712f50CAS | 22944169PubMed |

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., and Gilad, Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517.
RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2qsr3E&md5=2530057e11f8c17efce1b48e495f4cdcCAS | 18550803PubMed |

McDowell, K. J., Sharp, D. C., Grubaugh, W., Thatcher, W. W., and Wilcox, C. J. (1988). Restricted conceptus mobility results in failure of pregnancy maintenance in mares. Biol. Reprod. 39, 340–348.
Restricted conceptus mobility results in failure of pregnancy maintenance in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1ektr8%3D&md5=1269691d85847b2f88f7b98a57eee5f4CAS | 3179385PubMed |

Merkl, M., Ulbrich, S. E., Otzdorff, C., Herbach, N., Wanke, R., Wolf, E., Handler, J., and Bauersachs, S. (2010). Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy. Biol. Reprod. 83, 874–886.
Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls7%2FF&md5=526ceb5ff21beb93456f8d2e8c0ffba6CAS | 20631402PubMed |

Mitko, K., Ulbrich, S. E., Wenigerkind, H., Sinowatz, F., Blum, H., Wolf, E., and Bauersachs, S. (2008). Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle. Reproduction 135, 225–240.
Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtLo%3D&md5=3609a6ec7819f691e79ef77f35f79fb4CAS | 18239051PubMed |

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628.
Mapping and quantifying mammalian transcriptomes by RNA-Seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslyqs7k%3D&md5=0fd254b12f8780b5a830bdfd2446584cCAS | 18516045PubMed |

Nishikawa, Y., Baba, T., and Imori, T. (1984). Effect of the estrous cycle on uterine infection induced by Escherichia coli. Infect. Immun. 43, 678–683.
| 1:STN:280:DyaL2c7htVGgtQ%3D%3D&md5=74a171a97ff484f628213081e06a7513CAS | 6363298PubMed |

Oguri, N., and Tsutsumi, Y. (1972). Non-surgical recovery of equine eggs, and an attempt at non-surgical egg transfer in horses. J. Reprod. Fertil. 31, 187–195.
Non-surgical recovery of equine eggs, and an attempt at non-surgical egg transfer in horses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FltFKntw%3D%3D&md5=f420ce6ae013f6e6182bc8a512e19c11CAS | 4637635PubMed |

Ramadan, A. A., Johnson, G. L., and Lewis, G. S. (1997). Regulation of uterine immune function during the estrous cycle and in response to infectious bacteria in sheep. J. Anim. Sci. 75, 1621–1632.
| 1:CAS:528:DyaK2sXjs1Glu7w%3D&md5=be9a198a903fbe0a22222f58eda9d5fdCAS | 9250526PubMed |

R Development Core Team (2014). R: A language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna, Austria) Available at http://www.R-project.org/

Reiswig, J. D., Threlfall, W. R., and Rosol, T. J. (1993). A comparison of endometrial biopsy, culture and cytology during oestrus and dioestrus in the horse. Equine Vet. J. 25, 240–241.
A comparison of endometrial biopsy, culture and cytology during oestrus and dioestrus in the horse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3osFSrtQ%3D%3D&md5=aa9fc62e76bdff00231db5a96d6029afCAS | 8508755PubMed |

Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25.
A scaling normalization method for differential expression analysis of RNA-seq data.Crossref | GoogleScholarGoogle Scholar | 20196867PubMed |

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WlurvO&md5=6c4f2e1ff0fffb45078ce114defde940CAS | 19910308PubMed |

Samborski, A., Graf, S., Krebs, B., Kessler, S., and Bauersachs, S. (2013). Deep sequencing of the porcine endometrial transcriptome on Day 14 of pregnancy. Biol. Reprod. 88, 84.
Deep sequencing of the porcine endometrial transcriptome on Day 14 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 23426436PubMed |

Seaborn, E. (1925). The oestrous cycle in the mare and some associated phenomena. Anat. Rec. 30, 277–287.
The oestrous cycle in the mare and some associated phenomena.Crossref | GoogleScholarGoogle Scholar |

Senger, P. L. (2012). Reproductive cyclicity: terminology and basic concepts. In ‘Pathways to Pregnancy and Parturition’, 3rd edn. (Ed. P. L. Senger.) pp. 144–163. (Current Conceptions: Redmond, OR.)

Shankar, K., Zhong, Y., Kang, P., Blackburn, M. L., Soares, M. J., Badger, T. M., and Gomez-Acevedo, H. (2012). RNA-seq analysis of the functional compartments within the rat placentation site. Endocrinology 153, 1999–2011.
RNA-seq analysis of the functional compartments within the rat placentation site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVSmsbY%3D&md5=2d6817dc67067867694f8a1cead2f882CAS | 22355068PubMed |

Siiteri, P. K., Febres, F., Clemens, L., Chang, R. J., Gondos, B., and Stites, D. (1977). Progesterone and maintenance of pregnancy: is progesterone nature’s immunosuppressant? Ann. N. Y. Acad. Sci. 286, 384–397.
Progesterone and maintenance of pregnancy: is progesterone nature’s immunosuppressant?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktFKgsrY%3D&md5=ffc08b2990fcc6697195f4033f62d273CAS | 152594PubMed |

Szóstek, A. Z., Lukasik, K., Galvão, A. M., Ferreira-Dias, G. M., and Skarzynski, D. J. (2013). Impairment of the interleukin system in equine endometrium during the course of endometrosis. Biol. Reprod. 89, 79.
Impairment of the interleukin system in equine endometrium during the course of endometrosis.Crossref | GoogleScholarGoogle Scholar | 23946535PubMed |

Talbi, S., Hamilton, A., Vo, K., Tulac, S., Overgaard, M. T., Dosiou, C., Le Shay, N., Nezhat, C., Kempson, R., and Lessey, B. (2006). Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology 147, 1097–1121.
Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFygsbo%3D&md5=770d106dc4234faa11002955779a8de8CAS | 16306079PubMed |

Tan, Y. F., Li, F. X., Piao, Y. S., Sun, X. Y., and Wang, Y. L. (2003). Global gene profiling analysis of mouse uterus during the oestrous cycle. Reproduction 126, 171–182.
Global gene profiling analysis of mouse uterus during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjsbY%3D&md5=baeb88feb2d1af0e534215e294246fffCAS | 12887274PubMed |

Tizard, I. R. (2008). Innate immunity: the recognition of invaders. In ‘Veterinary Immunology: An Introduction’, 8th edn. (Ed. I. R. Tizard.) pp. 11–20. (Saunders: Philadelphia.)

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111.
TopHat: discovering splice junctions with RNA-Seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWisrk%3D&md5=19838d5c0624e50070732fe5c4acfd48CAS | 19289445PubMed |

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515.
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVyitLY%3D&md5=54d49a389761d2050915ef17f228ab95CAS | 20436464PubMed |

Troedsson, M. H. T., Loset, K., Alghamdi, A. M., Dahms, B., and Crabo, B. G. (2001). Interaction between equine semen and the endometrium: the inflammatory response to semen. Anim. Reprod. Sci. 68, 273–278.
Interaction between equine semen and the endometrium: the inflammatory response to semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVahs74%3D&md5=5bb65acb58e4309f24f2aeebea6e02a9CAS |

Trowsdale, J., and Betz, A. G. (2006). Mother’s little helpers: mechanisms of maternal–fetal tolerance. Nat. Immunol. 7, 241–246.
Mother’s little helpers: mechanisms of maternal–fetal tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVSrs7g%3D&md5=fbcb1480828e8c03eedc0e84c8a202ffCAS | 16482172PubMed |

Tsumagari, S., Ishinazaka, T., Kamata, H., Ohba, S., Tanaka, S., Ishii, M., and Memon, M. A. (2005). Induction of canine pyometra by inoculation of Escherichia coli into the uterus and its relationship to reproductive features. Anim. Reprod. Sci. 87, 301–308.
Induction of canine pyometra by inoculation of Escherichia coli into the uterus and its relationship to reproductive features.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mvVWhsg%3D%3D&md5=94e45ff23c60dcba80be01ac77e38d25CAS | 15911179PubMed |

Tunón, A. M., Rodriguez Martinez, H., Haglund, A., Albihn, A., Magnusson, U., and Einarsson, S. (1995). Ultrastructure of the secretory endometrium during oestrus in young maiden and foaled mares. Equine Vet. J. 27, 382–388.
Ultrastructure of the secretory endometrium during oestrus in young maiden and foaled mares.Crossref | GoogleScholarGoogle Scholar | 8654354PubMed |

Waelchli, R. O., and Winder, N. C. (1987). Immunohistochemical evaluation of the equine endometrium during the oestrous cycle. Equine Vet. J. 19, 299–302.
Immunohistochemical evaluation of the equine endometrium during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2szgsVWnsQ%3D%3D&md5=858d769b3de99c8a7d5a6b7bc9cd1ab3CAS | 3622458PubMed |

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63.
RNA-Seq: a revolutionary tool for transcriptomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWis7bL&md5=b7d68948c44ad27c78b21d2d1699c411CAS | 19015660PubMed |

Watson, E. D., and Dixon, C. (1993). An immunohistological study of MHC Class II expression and T lymphocytes in the endometrium of the mare. Equine Vet. J. 25, 120–124.
An immunohistological study of MHC Class II expression and T lymphocytes in the endometrium of the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3itlKntQ%3D%3D&md5=84711f6ed461e5787f8d36fc2fc9e04bCAS | 8467770PubMed |

Watson, E. D., Stokes, C. R., David, J. S., and Bourne, F. J. (1987). Effect of ovarian hormones on promotion of bactericidal activity by uterine secretions of ovariectomized mares. J. Reprod. Fertil. 79, 531–537.
Effect of ovarian hormones on promotion of bactericidal activity by uterine secretions of ovariectomized mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktVSqu7o%3D&md5=13c98ca2093c49e036824c7accbe961fCAS | 3572884PubMed |

Widders, P. R., Stokes, C. R., David, J. S. E., and Bourne, F. J. (1985). Effect of cycle stage on immunoglobulin concentrations in reproductive tract secretions of the mare. J. Reprod. Immunol. 7, 233–242.
Effect of cycle stage on immunoglobulin concentrations in reproductive tract secretions of the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3msVKgsA%3D%3D&md5=28329a9d7ec2afbdf2e6bbff60643a34CAS | 4040576PubMed |

Wood, G. A., Fata, J. E., Watson, K. L. M., and Khokha, R. (2007). Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus. Reproduction 133, 1035–1044.
Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlGmsro%3D&md5=59e246d019384fe5a568e8deac4f0e12CAS | 17616732PubMed |

Woodward, E. M., Christoffersen, M., Campos, J., Betancourt, A., and Horohov, D. (2013). Endometrial inflammatory markers of the early immune response in mares susceptible or resistant to persistent breeding-induced endometritis. Reproduction 145, 289–296.
Endometrial inflammatory markers of the early immune response in mares susceptible or resistant to persistent breeding-induced endometritis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFegurc%3D&md5=21cca8b87b8e0472e6cfb41723ae4828CAS | 23580950PubMed |

Wozniak, M. A., Modzelewska, K., Kwong, L., and Keely, P. J. (2004). Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 1692, 103–119.
Focal adhesion regulation of cell behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFymt7s%3D&md5=123b1f05dede54ffd8b155376f9325c5CAS | 15246682PubMed |

Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14.
Gene ontology analysis for RNA-seq: accounting for selection bias.Crossref | GoogleScholarGoogle Scholar | 20132535PubMed |