Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

High fructose consumption in pregnancy alters the perinatal environment without increasing metabolic disease in the offspring

Christopher Lineker A , Paul M. Kerr B G , Patricia Nguyen B , Ian Bloor F , Stuart Astbury A F , Nikhil Patel A F , Helen Budge F , Denise G. Hemmings C D E , Frances Plane B D E , Michael E. Symonds F and Rhonda C. Bell A E H
+ Author Affiliations
- Author Affiliations

A Division of Human Nutrition, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.

B Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.

C Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.

D Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.

E Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.

F Early Life Research Group, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen’s Medical Centre, University Hospital, The University of Nottingham, Nottingham NG7 2UH, UK.

G Present address: Faculty of Health and Community Studies, MacEwan University, Robbins Health Learning Centre, Edmonton, Alberta T5J 4S2, Canada.

H Corresponding author. Email: rhonda.bell@ualberta.ca

Reproduction, Fertility and Development 28(12) 2007-2015 https://doi.org/10.1071/RD15119
Submitted: 26 March 2015  Accepted: 4 June 2015   Published: 6 July 2015

Abstract

Maternal carbohydrate intake is one important determinant of fetal body composition, but whether increased exposure to individual sugars has long-term adverse effects on the offspring is not well established. Therefore, we examined the effect of fructose feeding on the mother, placenta, fetus and her offspring up to 6 months of life when they had been weaned onto a standard rodent diet and not exposed to additional fructose. Dams fed fructose were fatter, had raised plasma insulin and triglycerides from mid-gestation and higher glucose near term. Maternal resistance arteries showed changes in function that could negatively affect regulation of blood pressure and tissue perfusion in the mother and development of the fetus. Fructose feeding had no effect on placental weight or fetal metabolic profiles, but placental gene expression for the glucose transporter GLUT1 was reduced, whereas the abundance of sodium-dependent neutral amino acid transporter-2 was raised. Offspring born to fructose-fed and control dams were similar at birth and had similar post-weaning growth rates, and neither fat mass nor metabolic profiles were affected. In conclusion, raised fructose consumption during reproduction results in pronounced maternal metabolic and vascular effects, but no major detrimental metabolic effects were observed in offspring up to 6 months of age.

Additional keywords: developmental origins, fetal programming, metabolism, vascular function.


References

Ainge, H., Thompson, C., Ozanne, S. E., and Rooney, K. B. (2011). A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. Int. J. Obes. 35, 325–335.
A systematic review on animal models of maternal high fat feeding and offspring glycaemic control.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3mtlGruw%3D%3D&md5=6f2203e3861875a1334fba54dddf64f6CAS |

Alzamendi, A., Castrogiovanni, D., Gaillard, R. C., Spinedi, E., and Giovambattista, A. (2010). Increased male offspring’s risk of metabolic-neuroendocrine dysfunction and overweight after fructose-rich diet intake by the lactating mother. Endocrinology 151, 4214–4223.
Increased male offspring’s risk of metabolic-neuroendocrine dysfunction and overweight after fructose-rich diet intake by the lactating mother.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2qtrzE&md5=149dbcdc107b8357f17460330a841357CAS | 20660072PubMed |

Armitage, J. A., Taylor, P. D., and Poston, L. (2005). Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J. Physiol. 565, 3–8.
Experimental models of developmental programming: consequences of exposure to an energy rich diet during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyrurk%3D&md5=a31529f16a6f1f148ff07db55ac554faCAS | 15695245PubMed |

Battaglia, F. C., and Meschia, G. (1978). Principal substrates of fetal metabolism. Physiol. Rev. 58, 499–527.
| 1:CAS:528:DyaE1cXhs1Oiu7Y%3D&md5=5a34f8caaa0d56d1fb473e3db34034f5CAS | 417347PubMed |

Bloor, I. D., and Symonds, M. E. (2014). Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm. Behav. 66, 95–103.
Sexual dimorphism in white and brown adipose tissue with obesity and inflammation.Crossref | GoogleScholarGoogle Scholar | 24589990PubMed |

Bruun, J. M., Stallknecht, B., Helge, J. W., and Richelsen, B. (2007). Interleukin-18 in plasma and adipose tissue: effects of obesity, insulin resistance, and weight loss. Eur. J. Endocrinol. 157, 465–471.
Interleukin-18 in plasma and adipose tissue: effects of obesity, insulin resistance, and weight loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CmsL3J&md5=1a78551b0edce34c58e1d491fbd6e691CAS | 17893261PubMed |

Catena, C., Giacchetti, G., Novello, M., Colussi, G., Cavarape, A., and Sechi, L. A. (2003). Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am. J. Hypertens. 16, 973–978.
Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Omtro%3D&md5=50ee60c4b81a1a1cb78d01d840037c4dCAS | 14573337PubMed |

Chesley, L. C., Talledo, E., Bohler, C. S., and Zuspan, F. P. (1965). Vascular reactivity to angiotensin II and norepinephrine in pregnant women. Am. J. Obstet. Gynecol. 91, 837–842.
| 1:CAS:528:DyaF2MXnsFyjtA%3D%3D&md5=dba2f313689098cc2fe28f211fa55585CAS | 14261040PubMed |

Després, J.-P., and Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. Nature 444, 881–887.
Abdominal obesity and metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 17167477PubMed |

Duvekot, J. J., and Peeters, L. L. (1994). Maternal cardiovascular hemodynamic adaptation to pregnancy. Obstet. Gynecol. Surv. 49, S1–S14.
Maternal cardiovascular hemodynamic adaptation to pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7otlamtg%3D%3D&md5=6d15db1630c184de2c5a6c23f52e35f9CAS | 7877788PubMed |

Ericsson, A., Säljö, K., Sjöstrand, E., Jansson, N., Prasad, P. D., Powell, T. L., and Jansson, T. (2007). Brief hyperglycaemia in the early pregnant rat increases fetal weight at term by stimulating placental growth and affecting placental nutrient transport. J. Physiol. 581, 1323–1332.
Brief hyperglycaemia in the early pregnant rat increases fetal weight at term by stimulating placental growth and affecting placental nutrient transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslyis7o%3D&md5=0a8b5c950fbc7c1fa765c9681eac3fe9CAS | 17430988PubMed |

Friis, C. M., Paasche Roland, M. C., Godang, K., Ueland, T., Tanbo, T., Bollerslev, J., and Henriksen, T. (2013). Adiposity-related inflammation: effects of pregnancy. Obesity (Silver Spring) 21, E124–E130.
Adiposity-related inflammation: effects of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsV2murw%3D&md5=432ab4690e60d68184258d872df11eecCAS | 23505192PubMed |

Gaither, K., Quraishi, A. N., and Illsley, N. P. (1999). Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J. Clin. Endocrinol. Metab. 84, 695–701.
| 1:CAS:528:DyaK1MXhtVCiu78%3D&md5=89f4195ccb79b48ce2b490eeff788383CAS | 10022440PubMed |

Gerber, R. T., Anwar, M. A., and Poston, L. (1998). Enhanced acetylcholine induced relaxation in small mesenteric arteries from pregnant rats: an important role for endothelium-derived hyperpolarizing factor (EDHF). Br. J. Pharmacol. 125, 455–460.
Enhanced acetylcholine induced relaxation in small mesenteric arteries from pregnant rats: an important role for endothelium-derived hyperpolarizing factor (EDHF).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVSqsbc%3D&md5=43ed176b14b28875af91096f3d98d54eCAS | 9806327PubMed |

Gombos, R. B., and Hemmings, D. G. (2010). Differential effects on nitric oxide-mediated vasodilation in mesenteric and uterine arteries from cytomegalovirus-infected mice. Am. J. Physiol. Heart Circ. Physiol. 299, H1124–H1134.
Differential effects on nitric oxide-mediated vasodilation in mesenteric and uterine arteries from cytomegalovirus-infected mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKltbjF&md5=81b598989d38f6b78aa2f784e76d85e3CAS | 20675562PubMed |

Goran, M. I., Ulijaszek, S. J., and Ventura, E. E. (2013). High fructose corn syrup and diabetes prevalence: a global perspective. Glob. Public Health 8, 55–64.
High fructose corn syrup and diabetes prevalence: a global perspective.Crossref | GoogleScholarGoogle Scholar | 23181629PubMed |

Hemmings, D. G., Williams, S. J., and Davidge, S. T. (2005). Increased myogenic tone in 7-month-old adult male but not female offspring from rat dams exposed to hypoxia during pregnancy. Am. J. Physiol. Heart Circ. Physiol. 289, H674–H682.
Increased myogenic tone in 7-month-old adult male but not female offspring from rat dams exposed to hypoxia during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotFaqurc%3D&md5=7751e836a45cfc163bc5380d1775fb84CAS | 15833805PubMed |

Hwang, I. S., Ho, H., Hoffman, B. B., and Reaven, G. M. (1987). Fructose-induced insulin resistance and hypertension in rats. Hypertension 10, 512–516.
Fructose-induced insulin resistance and hypertension in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjs1KhtA%3D%3D&md5=aea7daf55e0c885e6ee15223cc5052ccCAS | 3311990PubMed |

Jansson, T., Wennergren, M., and Powell, T. L. (1999). Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes. Am. J. Obstet. Gynecol. 180, 163–168.
Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1ajt7o%3D&md5=cbac59f6f23ee1d97c72d47fd439f103CAS | 9914598PubMed |

Johnson, R. J., Segal, M. S., Sautin, Y., Nakagawa, T., Feig, D. I., Kang, D.-H., Gersch, M. S., Benner, S., and Sánchez-Lozada, L. G. (2007). Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr. 86, 899–906.
| 1:CAS:528:DC%2BD2sXhtFyks7vJ&md5=8513699914c38012b600871ad436d8c4CAS | 17921363PubMed |

Julian, C. G., Galan, H. L., Wilson, M. J., DeSilva, W., Cioffi-Ragan, D., Schwartz, J., and Moore, L. G. (2008). Lower uterine artery blood flow and higher endothelin relative to nitric oxide metabolite levels are associated with reductions in birth weight at high altitude. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R906–R915.
Lower uterine artery blood flow and higher endothelin relative to nitric oxide metabolite levels are associated with reductions in birth weight at high altitude.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCgtLrL&md5=d8203ba03165eb0370fa8aab44b2cccdCAS | 18579652PubMed |

Kaaja, R., Tikkanen, M. J., Viinikka, L., and Ylikorkala, O. (1995). Serum lipoproteins, insulin, and urinary prostanoid metabolites in normal and hypertensive pregnant women. Obstet. Gynecol. 85, 353–356.
Serum lipoproteins, insulin, and urinary prostanoid metabolites in normal and hypertensive pregnant women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlCqurg%3D&md5=202fd620d453e92de9be185e675018aeCAS | 7862371PubMed |

Kashiwagi, H., Yamazaki, K., Takekuma, Y., Ganapathy, V., and Sugawara, M. (2009). Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation. Amino Acids 36, 219–230.
Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyjs7w%3D&md5=71e8f746d4d11a93b43564a0dfc0c2faCAS | 18330498PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=6db539426b70529f14f65734e4c1d0f6CAS | 11846609PubMed |

McMillen, I. C., and Robinson, J. S. (2005). Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85, 571–633.
Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt12lsLw%3D&md5=5b8ebe3db481e7ed539d56393efdc857CAS | 15788706PubMed |

Metcalfe, J., McAnulty, J. H., and Ueland, K. (1981). Cardiovascular physiology. Clin. Obstet. Gynecol. 24, 693–710.
Cardiovascular physiology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL38%2Fis1WhtA%3D%3D&md5=dc149700e5c79053edec37011ee30f7cCAS | 7026101PubMed |

Meznarich, H. K., Hay, W. W., Sparks, J. W., Meschia, G., and Battaglia, F. C. (1987). Fructose disposal and oxidation rates in the ovine fetus. Q. J. Exp. Physiol. 72, 617–625.
Fructose disposal and oxidation rates in the ovine fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXnt1Ogtg%3D%3D&md5=7553464fd2ebfe7a9266b20ec2af0a04CAS | 3122263PubMed |

Nyby, M. D., Abedi, K., Smutko, V., Eslami, P., and Tuck, M. L. (2007). Vascular angiotensin type 1 receptor expression is associated with vascular dysfunction, oxidative stress and inflammation in fructose-fed rats. Hypertens. Res. 30, 451–457.
Vascular angiotensin type 1 receptor expression is associated with vascular dysfunction, oxidative stress and inflammation in fructose-fed rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFKitrg%3D&md5=5f8130ddf227a1760375a213a75688f9CAS | 17587757PubMed |

Ogura, K., Sakata, M., Yamaguchi, M., Kurachi, H., and Murata, Y. (1999). High concentration of glucose decreases glucose transporter-1 expression in mouse placenta in vitro and in vivo. J. Endocrinol. 160, 443–452.
High concentration of glucose decreases glucose transporter-1 expression in mouse placenta in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVeqtr4%3D&md5=5fa792b5983d2022161ad75aa56efb1aCAS | 10076190PubMed |

Ojha, S., Saroha, V., Symonds, M. E., and Budge, H. (2013). Excess nutrient supply in early life and its later metabolic consequences. Clin. Exp. Pharmacol. Physiol. 40, 817–823.
Excess nutrient supply in early life and its later metabolic consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ors7%2FJ&md5=9388f29dc65f66312c6787b896c9830bCAS | 23350968PubMed |

Osmond, D. T., King, R. G., Brennecke, S. P., and Gude, N. M. (2001). Placental glucose transport and utilisation is altered at term in insulin-treated, gestational-diabetic patients. Diabetologia 44, 1133–1139.
Placental glucose transport and utilisation is altered at term in insulin-treated, gestational-diabetic patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlWltrg%3D&md5=997eef0307c5f81d6cda80f13498ab32CAS | 11596668PubMed |

Park, K.-G., Park, K. S., Kim, M.-J., Kim, H.-S., Suh, Y.-S., Ahn, J. D., Park, K.-K., Chang, Y.-C., and Lee, I.-K. (2004). Relationship between serum adiponectin and leptin concentrations and body fat distribution. Diabetes Res. Clin. Pract. 63, 135–142.
Relationship between serum adiponectin and leptin concentrations and body fat distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvF2juw%3D%3D&md5=2601f9924c1d09452129f0640fd603d2CAS | 14739054PubMed |

Plane, F., Hurrell, A., Jeremy, J. Y., and Garland, C. J. (1996). Evidence that potassium channels make a major contribution to SIN-1-evoked relaxation of rat isolated mesenteric artery. Br. J. Pharmacol. 119, 1557–1562.
Evidence that potassium channels make a major contribution to SIN-1-evoked relaxation of rat isolated mesenteric artery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1egtQ%3D%3D&md5=cfb522ce3806dc21392532268eab1b9aCAS | 8982501PubMed |

Powe, C. E., Levine, R. J., and Karumanchi, S. A. (2011). Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 123, 2856–2869.
Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 21690502PubMed |

Rich-Edwards, J. W., Fraser, A., Lawlor, D. A., and Catov, J. M. (2014). Pregnancy characteristics and women’s future cardiovascular health: an underused opportunity to improve women’s health? Epidemiol. Rev. 36, 57–70.
Pregnancy characteristics and women’s future cardiovascular health: an underused opportunity to improve women’s health?Crossref | GoogleScholarGoogle Scholar | 24025350PubMed |

Romacho, T., Elsen, M., Röhrborn, D., and Eckel, J. (2014). Adipose tissue and its role in organ crosstalk. Acta Physiol. (Oxf.) 210, 733–753.
Adipose tissue and its role in organ crosstalk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt12itb0%3D&md5=645adf8b602814bd3cbe2c086deaef3dCAS | 24495317PubMed |

Sebert, S., Salonurmi, T., Keinänen-Kiukaanniemi, S., Savolainen, M., Herzig, K.-H., Symonds, M. E., and Järvelin, M.-R. (2014). Programming effects of FTO in the development of obesity. Acta Physiol. (Oxf.) 210, 58–69.
Programming effects of FTO in the development of obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFalurzK&md5=e319c8fabf3b91ace827f7e28c285182CAS | 24219661PubMed |

Sun, S. Z., Anderson, G. H., Flickinger, B. D., Williamson-Hughes, P. S., and Empie, M. W. (2011). Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. Food Chem. Toxicol. 49, 2875–2882.
Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12gsrrL&md5=599173c9259dc4b0e121bae06c3b1225CAS | 21889564PubMed |

Takagawa, Y., Berger, M. E., Hori, M. T., Tuck, M. L., and Golub, M. S. (2001). Long-term fructose feeding impairs vascular relaxation in rat mesenteric arteries. Am. J. Hypertens. 14, 811–817.
Long-term fructose feeding impairs vascular relaxation in rat mesenteric arteries.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvltFGgtQ%3D%3D&md5=6df0576beddbd528a3a808c29a00cd99CAS | 11497199PubMed |

Veerareddy, S., Cooke, C.-L. M., Baker, P. N., and Davidge, S. T. (2002). Vascular adaptations to pregnancy in mice: effects on myogenic tone. Am. J. Physiol. Heart Circ. Physiol. 283, H2226–H2233.
Vascular adaptations to pregnancy in mice: effects on myogenic tone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVWjt70%3D&md5=316dfaaa48d97275e1bc6ce07f28afd8CAS | 12388224PubMed |

Vickers, M. H., Clayton, Z. E., Yap, C., and Sloboda, D. M. (2011). Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology 152, 1378–1387.
Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOktr8%3D&md5=e24ca189480e3df95751573eb562421bCAS | 21303952PubMed |

Virdis, A., Ghiadoni, L., Giannarelli, C., and Taddei, S. (2010). Endothelial dysfunction and vascular disease in later life. Maturitas 67, 20–24.
Endothelial dysfunction and vascular disease in later life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqsb7E&md5=b0bbdbb7730b18152173e13ddd394283CAS | 20452737PubMed |

Waldén, T. B., Hansen, I. R., Timmons, J. A., Cannon, B., and Nedergaard, J. (2012). Recruited vs. nonrecruited molecular signatures of brown, ‘brite,’ and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19–E31.
Recruited vs. nonrecruited molecular signatures of brown, ‘brite,’ and white adipose tissues.Crossref | GoogleScholarGoogle Scholar | 21828341PubMed |

Xiao, D., Buchholz, J. N., and Zhang, L. (2006). Pregnancy attenuates uterine artery pressure-dependent vascular tone: role of PKC/ERK pathway. Am. J. Physiol. Heart Circ. Physiol. 290, H2337–H2343.
Pregnancy attenuates uterine artery pressure-dependent vascular tone: role of PKC/ERK pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVektr4%3D&md5=8fd311a829b5baeb75f13d641650b84eCAS | 16399857PubMed |