Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Retinoic acid treatment alters germ cell heterogeneity and testicular echotexture in prepubescent ram lambs

Jennifer L. Giffin A , Ann C. Hahnel A and Pawel M. Bartlewski A B
+ Author Affiliations
- Author Affiliations

A Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

B Corresponding author. Email: pmbart@uoguelph.ca

Reproduction, Fertility and Development 29(2) 244-253 https://doi.org/10.1071/RD15180
Submitted: 7 May 2015  Accepted: 20 June 2015   Published: 16 July 2015

Abstract

Testicular echotextural attributes are closely associated with spermatogenic development; however, precise characterisation of specific germ cell types is difficult due to tremendous germ cell heterogeneity. Recently, retinoic acid (RA) administration in neonatal mice was found to induce highly synchronised spermatogenesis as adults. A RA-treatment protocol was tested in 17 ram lambs treated with or without RA at 8 weeks of age, with scrotal ultrasonography and blood samples collected until castration 24 h or 2.5 weeks later. At 8.2 weeks of age, the nuclear : seminiferous tubule (ST) area was higher in the treated compared with the control group. Serum testosterone concentrations and numerical pixel values (NPVs) of the testicular parenchyma reached a peak at 9 weeks of age in both groups of ram lambs studied. At 10.5 weeks of age, the percentage of ST cross-sections with different germ cells as the most mature germ cell type was lower and the inter-tubular heterogeneity and NPVs were also lower in the treated compared with the control animals. RA manipulation of spermatogenesis in prepubertal ram lambs may provide a suitable model for further investigation of the echotextural characteristics of specific germ cell types and critical developmental events.

Additional keywords: computerised image analysis, echogenicity, ultrasound.


References

Ahmadi, B., Pik-Shan Lau, C., Giffin, J., Santos, N., Hahnel, A., Raeside, J., Christie, H., and Bartlewski, P. (2012). Suitability of epididymal and testicular ultrasonography and computerised image analysis for assessment of current and future semen quality in the ram. Exp. Biol. Med. (Maywood) 237, 186–193.
Suitability of epididymal and testicular ultrasonography and computerised image analysis for assessment of current and future semen quality in the ram.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1OktL4%3D&md5=9063914fe3ec51a3cf8731f046ea4284CAS | 22302707PubMed |

Aravindakshan, J. P., Honaramooz, A., Bartlewski, P. M., Beard, A. P., Pierson, R. A., and Rawlings, N. C. (2000). Pattern of gonadotrophin secretion and ultrasonographic evaluation of developmental changes in the testis of early- and late-maturing bull calves. Theriogenology 54, 339–354.
Pattern of gonadotrophin secretion and ultrasonographic evaluation of developmental changes in the testis of early- and late-maturing bull calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsleku7s%3D&md5=72a7a5bddfd8f1ff20cf01495307eb67CAS | 11051319PubMed |

Avelar, G. F., Oliveira, C. F. A., Soares, J. M., Silva, I. J., Dobrinski, I., Hess, R. A., and França, L. R. (2010). Postnatal cell proliferation and seminiferous tubule maturation in pigs: a non-random event. Theriogenology 74, 11–23.
Postnatal cell proliferation and seminiferous tubule maturation in pigs: a non-random event.Crossref | GoogleScholarGoogle Scholar | 20189235PubMed |

Bilińska, B., Leśniak, M., and Schmalz, B. (1997). Are ovine Leydig cells able to aromatise androgens? Reprod. Fertil. Dev. 9, 193–199.
Are ovine Leydig cells able to aromatise androgens?Crossref | GoogleScholarGoogle Scholar | 9208429PubMed |

Braun, K. W., Tribley, W. A., Griswold, M. D., and Kim, K. H. (2000). Follicle-stimulating hormone inhibits all-trans-retinoic acid-induced retinoic acid α nuclear localisation and transcriptional activation in mouse Sertoli cell lines. J. Biol. Chem. 275, 4145–4151.
Follicle-stimulating hormone inhibits all-trans-retinoic acid-induced retinoic acid α nuclear localisation and transcriptional activation in mouse Sertoli cell lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht12gtrs%3D&md5=1c1ddac618c8cffa07aa7874c25f126bCAS | 10660575PubMed |

Brito, L. F. C., Barth, A. D., Wilde, R. E., and Kastelic, J. P. (2012). Testicular ultrasonogram pixel intensity during sexual development and its relationship with semen quality, sperm production and quantitative testicular histology in beef bulls. Theriogenology 78, 69–76.
Testicular ultrasonogram pixel intensity during sexual development and its relationship with semen quality, sperm production and quantitative testicular histology in beef bulls.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vlvFajsw%3D%3D&md5=d129ab41f040816c2a1c8a53ca27016dCAS |

Busada, J. T., Kaye, E. P., Renegar, R. H., and Geyer, C. B. (2014). Retinoic acid induces multiple hallmarks of the pro-spermatogonia-to-spermatogonia transition in the neonatal mouse. Biol. Reprod. 90, 64.
Retinoic acid induces multiple hallmarks of the pro-spermatogonia-to-spermatogonia transition in the neonatal mouse.Crossref | GoogleScholarGoogle Scholar | 24478393PubMed |

Buzzard, J. J., Wreford, N. G., and Morrison, J. R. (2003). Thyroid hormone, retinoic acid and testosterone suppress proliferation and induce markers of differentiation in cultured rat Sertoli cells. Endocrinology 144, 3722–3731.
Thyroid hormone, retinoic acid and testosterone suppress proliferation and induce markers of differentiation in cultured rat Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFWkur8%3D&md5=884154c0af4cbe7bc7982e016a51d7c5CAS | 12933640PubMed |

Canadian Council on Animal Care (2009). ‘CCAC Guidelines On the Care and Use of Farm Animals in Research, Teaching and Testing’. (CCAC: Ottawa.)

Cavicchia, J. C., and Sacerdote, F. L. (1991). Correlation between blood–testis barrier development and onset of the first spermatogenic wave in normal and in busulfan-treated rats: a lanthanum and freeze-fracture study. Anat. Rec. 230, 361–368.
Correlation between blood–testis barrier development and onset of the first spermatogenic wave in normal and in busulfan-treated rats: a lanthanum and freeze-fracture study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3MzivVCgtQ%3D%3D&md5=c12d610580e9b9564489cfb9b035de44CAS | 1867410PubMed |

Chandolia, R. K., Bartlewski, P. M., Omeke, B. C., Beard, A. P., Rawlings, N. C., and Pierson, R. A. (1997a). Ultrasonography of the developing reproductive tract in ram lambs: effects of a GnRH agonist. Theriogenology 48, 99–117.
Ultrasonography of the developing reproductive tract in ram lambs: effects of a GnRH agonist.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslanurY%3D&md5=87b59f3f7c87d96b0579d006d8079304CAS | 16728111PubMed |

Chandolia, R. K., Honaramooz, A., Omeke, B. C., Pierson, R., Beard, A. P., and Rawlings, N. C. (1997b). Assessment of development of the testes and accessory glands by ultrasonography in bull calves and associated endocrine changes. Theriogenology 48, 119–132.
Assessment of development of the testes and accessory glands by ultrasonography in bull calves and associated endocrine changes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVylsQ%3D%3D&md5=b4119c086c51b29a24fc42b07edc184aCAS | 16728112PubMed |

Clemmons, A. J., Thompson, D. L., and Johnson, L. (1995). Local initiation of spermatogenesis in the horse. Biol. Reprod. 52, 1258–1267.
Local initiation of spermatogenesis in the horse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVGls7g%3D&md5=532149f2d397bad5bcd6f12d49fa1a46CAS | 7632834PubMed |

Courot, M., Hochereau-de Reviers, M.-T., and Ortavant, R. (1970). Spermatogenesis. In ‘The Testis’. (Eds A. D. Johnson, W. R. Gomes and N. L. Vandemark.) pp. 339–432. (Academic Press: New York.)

Culty, M. (2013). Gonocytes, from the fifties to the present: is there a reason to change the name? Biol. Reprod. 89, 46.
Gonocytes, from the fifties to the present: is there a reason to change the name?Crossref | GoogleScholarGoogle Scholar | 23843237PubMed |

Czarnota, G. J., and Kolios, M. C. (2010). Ultrasound detection of cell death. Imaging Med. 2, 17–28.
Ultrasound detection of cell death.Crossref | GoogleScholarGoogle Scholar |

Darzynkiewicz, Z., Huang, X., Okafuji, M., and King, M. A. (2004). Cytometric methods to detect apoptosis. In ‘Methods in Cell Biology’. (Eds Z. Darzynkiewicz, M. Roederer and H. J. Tanke.) pp. 307–341. (Elsevier Academic Press: San Diego.)

Davis, J. C., Snyder, E. M., Hogarth, C. A., Small, C., and Griswold, M. D. (2013). Induction of spermatogenic synchrony by retinoic acid in neonatal mice. Spermatogenesis 3, e23180.
Induction of spermatogenic synchrony by retinoic acid in neonatal mice.Crossref | GoogleScholarGoogle Scholar | 23687613PubMed |

Evans, A. C. O., Pierson, R. A., Garcia, A., McDougall, L. M., Hrudka, F., and Rawlings, N. C. (1996). Changes in circulating hormone concentrations, testes histology and testes ultrasonography during sexual maturation in beef bulls. Theriogenology 46, 345–357.
Changes in circulating hormone concentrations, testes histology and testes ultrasonography during sexual maturation in beef bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVShsb4%3D&md5=69f6f24acd3c219e49b783ee8bf2b0a8CAS |

Ford, J. J., and Wise, T. H. (2009). Sertoli cell differentiation in pubertal boars. J. Anim. Sci. 87, 2536–2543.
Sertoli cell differentiation in pubertal boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptV2gtrc%3D&md5=1ed2568c0be6a68b823da3bd42dd54ccCAS | 19420233PubMed |

Foster, D. L., Mickelson, I. H., Ryan, K. D., Coon, G. A., Drongowski, R. A., and Holt, J. A. (1978). Ontogeny of pulsatile luteinising hormone and testosterone secretion in male lambs. Endocrinology 102, 1137–1146.
Ontogeny of pulsatile luteinising hormone and testosterone secretion in male lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktVektbs%3D&md5=3e2fcc08d1441ea9b87ef2e47da028b0CAS | 744014PubMed |

Giffin, J. L., Franks, S. E., Rodriguez, J. R., Hahnel, A., and Bartlewski, P. M. (2009). A study of morphological and haemodynamic determinants of testicular echotexture characteristics in the ram. Exp. Biol. Med. (Maywood) 234, 794–801.
A study of morphological and haemodynamic determinants of testicular echotexture characteristics in the ram.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlWrtbw%3D&md5=6ee74f5f291eba2bef657236a6805716CAS | 19429851PubMed |

Giffin, J. L., Bartlewski, P. M., and Hahnel, A. C. (2014). Correlations among ultrasonographic and microscopic characteristics of prepubescent ram lamb testes. Exp. Biol. Med. (Maywood) 239, 1606–1618.
Correlations among ultrasonographic and microscopic characteristics of prepubescent ram lamb testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptlSiuw%3D%3D&md5=c0b1b15d054371b6f44f4b7631b5ca50CAS | 25030481PubMed |

Ginther, O. J. (1995). ‘Ultrasonic Imaging and Animal Reproduction: Fundamentals’. (Equiservices Publishing: Cross Plains, TX, USA.)

Gobé, G., and Harmon, B. (2008). Apoptosis: morphological criteria and other assays. eLS https://doi.org/10.1002/9780470015902.a0002569.pub3

Griswold, M. D., Hogarth, C. A., Bowles, J., and Koopman, P. (2012). Initiating meiosis: the case for retinoic acid. Biol. Reprod. 86, 35.
Initiating meiosis: the case for retinoic acid.Crossref | GoogleScholarGoogle Scholar | 22075477PubMed |

Hogarth, C. A., and Griswold, M. D. (2010). The key role of vitamin A in spermatogenesis. J. Clin. Invest. 120, 956–962.
The key role of vitamin A in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVChsrg%3D&md5=c44079237c6f0038890de8e403bf3a9eCAS | 20364093PubMed |

Latendresse, J. R., Warbrittion, A. R., Jonassen, H., and Creasy, D. M. (2002). Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol. Pathol. 30, 524–533.
Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid.Crossref | GoogleScholarGoogle Scholar | 12187944PubMed |

Meunier, J., and Bertrand, M. (1995). Echographic image mean grey level changes with tissue dynamics: a system-based model study. IEEE Trans. Biomed. Eng. 42, 403–410.
Echographic image mean grey level changes with tissue dynamics: a system-based model study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3kslaisA%3D%3D&md5=c20962b17b7d01c8a95e9a7698e68f56CAS | 7729839PubMed |

Nicholls, P. K., Harrison, C. A., Rainczuk, K. E., Vogl, A. W., and Stanton, P. G. (2013). Retinoic acid promotes Sertoli cell differentiation and antagonises activin-induced proliferation. Mol. Cell. Endocrinol. 377, 33–43.
Retinoic acid promotes Sertoli cell differentiation and antagonises activin-induced proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gmur7I&md5=505dec6f1c22c646d53dec1b4dec906eCAS | 23831638PubMed |

Olster, D. H., and Foster, D. L. (1986). Control of gonadotrophin secretion in the male during puberty: a decrease in response to steroid inhibitory feedback in the absence of an increase in steroid-independent drive in the sheep. Endocrinology 118, 2225–2234.
Control of gonadotrophin secretion in the male during puberty: a decrease in response to steroid inhibitory feedback in the absence of an increase in steroid-independent drive in the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktFyrsrw%3D&md5=223737f4655b743a9f050e7843b2bbf4CAS | 3084214PubMed |

Olster, D. H., and Foster, D. L. (1988). Control of gonadotrophin secretion during the pubertal and seasonal transition in the male sheep. J. Reprod. Fertil. 82, 179–191.
Control of gonadotrophin secretion during the pubertal and seasonal transition in the male sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtVKktbw%3D&md5=6bd733c4f8dc035fd39e74d109a4eb80CAS | 3123663PubMed |

Pelletier, J., Carrez-Camous, S., and Thiery, J. C. (1981). Basic neuroendocrine events before puberty in cattle, sheep and pigs. J. Reprod. Fertil. Suppl. 30, 91–102.
| 1:CAS:528:DyaL38XhtFGqu7o%3D&md5=0ef00665097e8341386ed71794411ec3CAS | 6820057PubMed |

Pierson, R. A., and Adams, G. P. (1995). Computer-assisted image analysis, diagnostic ultrasonography and ovulation induction: strange bedfellows. Theriogenology 43, 105–112.
Computer-assisted image analysis, diagnostic ultrasonography and ovulation induction: strange bedfellows.Crossref | GoogleScholarGoogle Scholar |

Rawlings, N., Evans, A. C. O., Chandolia, R. K., and Bagu, E. T. (2008). Sexual maturation in the bull. Reprod. Domest. Anim. 43, 295–301.
Sexual maturation in the bull.Crossref | GoogleScholarGoogle Scholar | 18638138PubMed |

Rodriguez, I., Ody, C., Araki, K., Garcia, I., and Vassalli, P. (1997). An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 16, 2262–2270.
An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsV2nu7Y%3D&md5=e575d6b7f3f706387f0b9c9391ed5175CAS | 9171341PubMed |

Rodríguez-Casuriaga, R., Folle, G. A., Santiñaque, F., López-Carro, B., and Geisinger, A. (2013). Simple and efficient technique for the preparation of testicular cell suspensions. J. Vis. Exp. 78, e50102.

Russell, L. D., Bartke, A., and Goh, J. C. (1989). Postnatal development of the Sertoli cell barrier, tubular lumen and cytoskeleton of Sertoli and myoid cells in the rat and their relationship to tubular fluid secretion and flow. Am. J. Anat. 184, 179–189.
Postnatal development of the Sertoli cell barrier, tubular lumen and cytoskeleton of Sertoli and myoid cells in the rat and their relationship to tubular fluid secretion and flow.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1MzitVensg%3D%3D&md5=f878f5ca1f7774a2904a4369b11965ccCAS | 2750675PubMed |

Sehgal, C. M. (1993). Quantitative relationship between tissue composition and scattering of ultrasound. J. Acoust. Soc. Am. 94, 1944–1952.
Quantitative relationship between tissue composition and scattering of ultrasound.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FksVWrtw%3D%3D&md5=c5569e746a816f01f1ba3890a7f96df3CAS | 8227740PubMed |

Silverman, R. H., and Noetzel, A. S. (1990). Image processing and pattern recognition in ultrasonograms by back propagation. Neural Netw. 3, 593–603.
Image processing and pattern recognition in ultrasonograms by back propagation.Crossref | GoogleScholarGoogle Scholar |

Singh, J., Adams, G. P., and Pierson, R. A. (2003). Promise of new imaging technologies for assessing ovarian function. Anim. Reprod. Sci. 78, 371–399.
Promise of new imaging technologies for assessing ovarian function.Crossref | GoogleScholarGoogle Scholar | 12818654PubMed |

Snyder, E. M., Davis, J. C., Zhou, Q., Evanoff, R., and Griswold, M. D. (2011). Exposure to retinoic acid in the neonatal but not adult mouse results in synchronous spermatogenesis. Biol. Reprod. 84, 886–893.
Exposure to retinoic acid in the neonatal but not adult mouse results in synchronous spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlGju7c%3D&md5=31adda8149abc7dea5b9394650b99560CAS | 21228214PubMed |

Sofikitis, N., Giotitsas, N., Tsounapi, P., Baltogiannis, D., Giannakis, D., and Pardalidis, N. (2008). Hormonal regulation of spermatogenesis and spermiogenesis. J. Steroid Biochem. Mol. Biol. 109, 323–330.
Hormonal regulation of spermatogenesis and spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeitLc%3D&md5=392ba2030b36f10c403c56732c1f173cCAS | 18400489PubMed |

Steger, K., and Wrobel, K. H. (1996). Postnatal development of ovine seminiferous tubules: an electron microscopical and morphometric study. Ann. Anat. 178, 201–213.
Postnatal development of ovine seminiferous tubules: an electron microscopical and morphometric study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zgtlKgsg%3D%3D&md5=186d0b161410566af842d63b248254d5CAS | 8712367PubMed |

Taggart, L. R., Baddour, R. E., Giles, A., Czarnota, G. J., and Kolios, M. C. (2007). Ultrasonic characterisation of whole cells and isolated nuclei. Ultrasound Med. Biol. 33, 389–401.
Ultrasonic characterisation of whole cells and isolated nuclei.Crossref | GoogleScholarGoogle Scholar | 17257739PubMed |

Tilbrook, A. J., de Kretser, D. M., and Clarke, I. J. (1999). Changes in the suppressive effects of recombinant inhibin A on FSH secretion in ram lambs during sexual maturation: evidence for alterations in the clearance rate of inhibin. J. Endocrinol. 161, 219–229.
Changes in the suppressive effects of recombinant inhibin A on FSH secretion in ram lambs during sexual maturation: evidence for alterations in the clearance rate of inhibin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs12kt7k%3D&md5=e1e322dfa635865d2d9519d8d9dd311eCAS | 10320819PubMed |

van Belle, G., and Kerr, K. F. (2012). The basics. In ‘Design and Analysis of Experiments in the Health Sciences’. (Eds G. van Belle and K. F. Kerr.) pp. 1–40. (John Wiley & Sons, Inc.: Hoboken, NJ.)

van Haaster, L. H., de Jong, F. H., Docter, R., and de Rooij, D. G. (1993). High neonatal tri-iodothyronine levels reduce the period of Sertoli cell proliferation and accelerate tubular lumen formation in the rat testis, and increase serum inhibin levels. Endocrinology 133, 755–760.
| 1:CAS:528:DyaK3sXmtFOqsLs%3D&md5=496bf7dd4b303d2fffce85c6998706a5CAS | 8344214PubMed |

Wańkowska, M., Polkowska, J., Wójcik-Gładysz, A., and Romanowicz, K. (2010). Influence of gonadal hormones on endocrine activity of gonadotroph cells in the adenohypophysis of male lambs during the postnatal transition to puberty. Anim. Reprod. Sci. 122, 342–352.
Influence of gonadal hormones on endocrine activity of gonadotroph cells in the adenohypophysis of male lambs during the postnatal transition to puberty.Crossref | GoogleScholarGoogle Scholar | 21035969PubMed |

Wilson, P. R., and Lapwood, K. R. (1979). Studies of reproductive development in Romney rams: I. Basal levels and plasma profiles of LH, testosterone and prolactin. Biol. Reprod. 20, 965–970.
Studies of reproductive development in Romney rams: I. Basal levels and plasma profiles of LH, testosterone and prolactin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkslagsb8%3D&md5=e6b61dc054e0a4c87334a52e21d7ee5fCAS | 454774PubMed |

Wrobel, K. H., Reichold, J., and Schimmel, M. (1995). Quantitative morphology of the ovine seminiferous epithelium. Ann. Anat. 177, 19–32.
Quantitative morphology of the ovine seminiferous epithelium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7nslenuw%3D%3D&md5=c413a309c9d67aea27b53782c9bf4ed6CAS | 7872493PubMed |

Xing, W., and Sairam, M. R. (2002). Retinoic acid mediates transcriptional repression of ovine follicle-stimulating hormone receptor gene via a pleiotropic nuclear receptor response element. Biol. Reprod. 67, 204–211.
Retinoic acid mediates transcriptional repression of ovine follicle-stimulating hormone receptor gene via a pleiotropic nuclear receptor response element.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2itLc%3D&md5=e325c5be7517334185827b5f36f1e6ccCAS | 12080019PubMed |

Yarney, T. A., and Sanford, L. M. (1990). Pubertal development of ram lambs: reproductive hormone concentrations as indices of postpubertal reproductive function. Can. J. Anim. Sci. 70, 149–157.
Pubertal development of ram lambs: reproductive hormone concentrations as indices of postpubertal reproductive function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktVSks7g%3D&md5=c181aca3de287062928feea01bcb0e39CAS |

Zhou, Q., Nie, R., Li, Y., Friel, P., Mitchell, D., Hess, R. A., Small, C., and Griswold, M. D. (2008). Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes. Biol. Reprod. 79, 35–42.
Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFWnsb8%3D&md5=7a66574cc0eeab28aa0e40d7d4da4860CAS | 18322276PubMed |