Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos

Yanfang Huang A I , Xiaohong Jiang B C , Miao Yu B D , Rongfu Huang E , Jianfeng Yao B F , Ming Li B , Fangfang Zheng B and Xiaoyu Yang B G H I
+ Author Affiliations
- Author Affiliations

A The First Affiliated Hospital, Fujian Medical University, Chazhong Road, 350005, Fuzhou, PR China.

B College of Preclinical Medicine, Fujian Medical University, Jiaotong Road, 350004, Fuzhou, PR China.

C Fuzhou Center for Disease Control and Prevention, Qunzhong Road, 350004, Fuzhou, PR China.

D Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Huixing Road, 643000, Sichuan, PR China.

E The Second Affiliated Hospital, Fujian Medical University, Donghai Road, 362000, Quanzhou, PR China.

F Quanzhou Maternity and Child Health Care Hospital, Fengze Road, 362000, Quanzhou, PR China.

G The Affiliated Fuzhou First Hospital, Fujian Medical University, Dadao Road, 350009, Fuzhou, PR China.

H Fuzhou Maternity and Child Health Care Hospital, Liuyi Road, 350005, Fuzhou, PR China.

I Corresponding authors. Emails: yanfanghuang333@163.com; yangxiaoyu683@163.com

Reproduction, Fertility and Development 29(6) 1260-1269 https://doi.org/10.1071/RD15463
Submitted: 8 November 2015  Accepted: 4 June 2016   Published: 1 August 2016

Abstract

Somatic cell nuclear transfer is frequently associated with abnormal epigenetic modifications that may lead to the developmental failure of cloned embryos. BIX-01294 (a diazepine–quinazoline–amine derivative) is a specific inhibitor of the histone methyltransferase G9a. The aim of the present study was to investigate the effects of BIX-01294 on development, dimethylation of histone H3 at lysine 9 (H3K9), DNA methylation and the expression of imprinted genes in cloned mouse preimplantation embryos. There were no significant differences in blastocyst rates of cloned embryos treated with or without 0.1 μM BIX-01294. Relative to clone embryos treated without 0.1 μM BIX-01294, exposure of embryos to BIX-01294 decreased histone H3K9 dimethylation and DNA methylation in cloned embryos to levels that were similar to those of in vivo-fertilised embryos at the 2-cell and blastocyst stages. Cloned embryos had lower expression of octamer-binding transcription factor 4 (Oct4) and small nuclear ribonucleoprotein N (Snrpn), but higher expression of imprinted maternally expressed transcript (non-protein coding) (H19) and growth factor receptor-bound protein 10 (Grb10) compared with in vivo-fertilised counterparts. The addition of 0.1 μM BIX-01294 to the activation and culture medium resulted in lower H19 expression and higher cyclin dependent kinase inhibitor 1C (Cdkn1c) and delta-like 1 homolog (Dlk1) expression, but had no effect on the expression of Oct4, Snrpn and Grb10. The loss of methylation at the Grb10 cytosine–phosphorous–guanine (CpG) islands in cloned embryos was partially corrected by BIX-01294. These results indicate that BIX-01294 treatment of cloned embryos has beneficial effects in terms of correcting abnormal epigenetic modifications, but not on preimplantation development.

Additional keywords: DNA methylation, H3K9 me2, imprinted genes, somatic cell nuclear transfer.


References

Bui, H. T., Wakayama, S., Kishigami, S., Park, K. K., Kim, J. H., Thuan, N. V., and Wakayama, T. (2010). Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biol. Reprod. 83, 454–463.
Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsrvL&md5=7f911a934f2c92dc658a86b46f38b1d7CAS | 20505166PubMed |

Chang, Y., Zhang, X., Horton, J. R., Upadhyay, A. K., Spannhoff, A., Liu, J., Snyder, J. P., Bedford, M. T., and Cheng, X. (2009). Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol. 16, 312–317.
Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFKjt7g%3D&md5=71394c577ffacc831876b9b6eae9a12bCAS | 19219047PubMed |

Collins, R., and Cheng, X. (2010). A case study in cross-talk: the histone lysine methyltransferases G9a and GLP. Nucleic Acids Res. 38, 3503–3511.
A case study in cross-talk: the histone lysine methyltransferases G9a and GLP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOiur8%3D&md5=473e7327aadadda56bed6a042523bbd5CAS | 20159995PubMed |

Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA 98, 13 734–13 738.
Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyntrs%3D&md5=fbd8f0e2847e93f0dcc6807df8b8b1fcCAS |

Dong, K. B., Maksakova, I. A., Mohn, F., Leung, D., Appanah, R., Lee, S., Yang, H. W., Lam, L. L., Mager, D. L., Schubeler, D., Tachibana, M., Shinkai, Y., and Lorincz, M. C. (2008). DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 27, 2691–2701.
DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrtLbP&md5=84f20d2c92e0f2fb090e5405438b4ef0CAS | 18818693PubMed |

Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., Deplus, R., Fuks, F., Shinkai, Y., Cedar, H., and Bergman, Y. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol. 15, 1176–1183.
De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlalsL3M&md5=a1466ecdb31573d3ee87cb1d0ab15a70CAS | 18953337PubMed |

Everts, R. E., Chavatte-Palmer, P., Razzak, A., Hue, I., Green, C. A., Oliveira, R., Vignon, X., Rodriguez-Zas, S. L., Tian, X. C., Yang, X., Renard, J. P., and Lewin, H. A. (2008). Aberrant gene expression patterns in placentomes are associated with phenotypically normal and abnormal cattle cloned by somatic cell nuclear transfer. Physiol. Genomics 33, 65–77.
Aberrant gene expression patterns in placentomes are associated with phenotypically normal and abnormal cattle cloned by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Wisro%3D&md5=65e267bb2caafa37d422da2ce2905e88CAS | 18089771PubMed |

Feldman, N., Gerson, A., Fang, J., Li, E., Zhang, Y., Shinkai, Y., Cedar, H., and Bergman, Y. (2006). G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8, 188–194.
G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFOlsQ%3D%3D&md5=c2d093b375174de88614ecdd39a4a4aeCAS | 16415856PubMed |

Fowden, A. L., Coan, P. M., Angiolini, E., Burton, G. J., and Constancia, M. (2011). Imprinted genes and the epigenetic regulation of placental phenotype. Prog. Biophys. Mol. Biol. 106, 281–288.
Imprinted genes and the epigenetic regulation of placental phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKgtrk%3D&md5=2d2be062893a98ae653c07f0fe8cf61eCAS | 21108957PubMed |

Frontera, M., Dickins, B., Plagge, A., and Kelsey, G. (2008). Imprinted genes, postnatal adaptations and enduring effects on energy homeostasis. Adv. Exp. Med. Biol. 626, 41–61.
Imprinted genes, postnatal adaptations and enduring effects on energy homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKgsLfF&md5=784e96c6c7a0cce6dbe8ec887080809eCAS | 18372790PubMed |

Fu, L., Zhang, J., Yan, F. X., Guan, H., An, X. R., and Hou, J. (2012). Abnormal histone H3K9 dimethylation but normal dimethyltransferase EHMT2 expression in cloned sheep embryos. Theriogenology 78, 1929–1938.
Abnormal histone H3K9 dimethylation but normal dimethyltransferase EHMT2 expression in cloned sheep embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSltLrF&md5=05223faf263d245a8009844cdca21555CAS | 23058792PubMed |

Fuks, F. (2005). DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev. 15, 490–495.
DNA methylation and histone modifications: teaming up to silence genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFentbc%3D&md5=4ecbb01616d47e24b482a27b95d5faa7CAS | 16098738PubMed |

Gurdon, J. B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–640.
| 1:STN:280:DyaF387ktlSmtQ%3D%3D&md5=1428e4b1995c8715d19f9596eee14478CAS | 13951335PubMed |

Gurdon, J. B., and Wilmut, I. (2011). Nuclear transfer to eggs and oocytes. Cold Spring Harb. Perspect. Biol. 3, a002659.
Nuclear transfer to eggs and oocytes.Crossref | GoogleScholarGoogle Scholar | 21555407PubMed |

Hauser, A. T., and Jung, M. (2011). Chemical probes: sharpen your epigenetic tools. Nat. Chem. Biol. 7, 499–500.
Chemical probes: sharpen your epigenetic tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFyhsL8%3D&md5=c10065430da776b4dde6a8ad0cd25553CAS | 21769094PubMed |

Huffman, S. R., Pak, Y., and Rivera, R. M. (2015). Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Mol. Reprod. Dev. 82, 207–217.
Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVSms7Y%3D&md5=a25a72fbb11577b0cedfdb57af58048aCAS | 25737418PubMed |

Kelsey, G., and Feil, R. (2013). New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110336.
New insights into establishment and maintenance of DNA methylation imprints in mammals.Crossref | GoogleScholarGoogle Scholar | 23166397PubMed |

Kishigami, S., Wakayama, S., Van Thuan, N., Ohta, H., Mizutani, E., Hikichi, T., Bui, H. -T., Balbach, S., Ogura, A., Boiani, M., and Wakayama, T. (2006). Production of cloned mice by somatic cellnuclear transfer. Nat. Protoc. 1, 125–138.
Production of cloned mice by somatic cellnuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOitb3F&md5=91fe02c427ad086490f81f163b33d2f5CAS | 17406224PubMed |

Kubicek, S., O’Sullivan, R. J., August, E. M., Hickey, E. R., Zhang, Q., Teodoro, M. L., Rea, S., Mechtler, K., Kowalski, J. A., Homon, C. A., Kelly, T. A., and Jenuwein, T. (2007). Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473–481.
Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitl2jurs%3D&md5=15e1c3f2f09fa730be851bc2dfd2d8d9CAS | 17289593PubMed |

Li, Y., and Sasaki, H. (2011). Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res. 21, 466–473.
Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVCgurY%3D&md5=89c2c3bc8a95ce7079dab7edd5febee9CAS | 21283132PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=3d53b7f31b0c4fa91bfc79f22f87effaCAS | 11846609PubMed |

Mann, M. R. W., Chung, Y. G., Nolen, L. D., Verona, R. I., Latham, K. E., and Bartolomei, M. S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 69, 902–914.
Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVeitbw%3D&md5=e4c56f99906cf4de3b9b05ec627f5224CAS |

Markoulaki, S., Meissner, A., and Jaenisch, R. (2008). Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse. Methods 45, 101–114.
Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVGit7c%3D&md5=c011e5aff4dc7d102c7c1435ce98531aCAS | 18593608PubMed |

Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. F. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.
Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7c%3D&md5=86883a51b66e8d3a51bebb85e5e2e6c9CAS | 18239046PubMed |

Oback, B. (2008). Climbing Mount Efficiency: small steps, not giant leaps towards higher cloning success in farm animals. Reprod. Domest. Anim. 43, 407–416.
Climbing Mount Efficiency: small steps, not giant leaps towards higher cloning success in farm animals.Crossref | GoogleScholarGoogle Scholar | 18638154PubMed |

Ogura, A., Inoue, K., and Wakayama, T. (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110329.
Recent advancements in cloning by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 23166393PubMed |

Okae, H., Matoba, S., Nagashima, T., Mizutani, E., Inoue, K., Ogonuki, N., Chiba, H., Funayama, R., Tanaka, S., Yaegashi, N., Nakayama, K., Sasaki, H., Ogura, A., and Arima, T. (2014). RNA sequencing-based identification of aberrant imprinting in cloned mice. Hum. Mol. Genet. 23, 992–1001.
RNA sequencing-based identification of aberrant imprinting in cloned mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Ogt7g%3D&md5=16b1d0c2b7501fdafb6aa2f9d1c55637CAS | 24105465PubMed |

Park, K. E., Johnson, C. M., and Cabot, R. A. (2012). IVMBIX-01294, an inhibitor of the histone methyltransferase EHMT2, disrupts histone H3 lysine 9 (H3K9) dimethylation in the cleavage-stage porcine embryo. Reprod. Fertil. Dev. 24, 813–821.
IVMBIX-01294, an inhibitor of the histone methyltransferase EHMT2, disrupts histone H3 lysine 9 (H3K9) dimethylation in the cleavage-stage porcine embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKlsL8%3D&md5=f8925170d064dc74d70a21c21dd2bf77CAS | 22781932PubMed |

Pasque, V., Jullien, J., Miyamoto, K., Halley-Stott, R. P., and Gurdon, J. B. (2011). Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet. 27, 516–525.
Epigenetic factors influencing resistance to nuclear reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKhur7E&md5=eb027ba5ef4ab63560cc9f484ce0a3ffCAS | 21940062PubMed |

Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D., and Jenuwein, T. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599.
Regulation of chromatin structure by site-specific histone H3 methyltransferases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFegs7s%3D&md5=1ee20e8e46433663e93e5cceed958289CAS | 10949293PubMed |

Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., and Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574.
Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaqs7%2FJ&md5=9555ee615c37e735f224bc4fa8e99da0CAS | 18983970PubMed |

Shinkai, Y., and Tachibana, M. (2011). H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 25, 781–788.
H3K9 methyltransferase G9a and the related molecule GLP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlKntrg%3D&md5=4fcc7fc6a64d0cb60cb881cd502cf083CAS | 21498567PubMed |

Sterneckert, J., Höing, S., and Schöler, H. R. (2012). Concise review: Oct4 and more: the reprogramming expressway. Stem Cells 30, 15–21.
Concise review: Oct4 and more: the reprogramming expressway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVymsLg%3D&md5=719872d1cfa54e435637bb8b8df285b1CAS | 22009686PubMed |

Su, J. M., Yang, B., Wang, Y. S., Li, Y. Y., Xiong, X. R., Wang, L. J., Guo, Z. K., and Zhang, Y. (2011). Expression and methylation status of imprinted genes in placentas of deceased and live cloned transgenic calves. Theriogenology 75, 1346–1359.
Expression and methylation status of imprinted genes in placentas of deceased and live cloned transgenic calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12jt7o%3D&md5=ba05ce8c617b7f2241994e077ff2a687CAS | 21295824PubMed |

Suzuki, T., Kondo, S., Wakayama, T., Cizdziel, P. E., and Hayashizaki, Y. (2008). Genome-wide analysis of abnormal H3K9 acetylation in cloned mice. PLoS One 3, e1905.
Genome-wide analysis of abnormal H3K9 acetylation in cloned mice.Crossref | GoogleScholarGoogle Scholar | 18398451PubMed |

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1aktbs%3D&md5=281c397210b4e43d134c8a186b5e3900CAS | 16904174PubMed |

Terashita, Y., Yamagata, K., Tokoro, M., Itoi, F., Wakayama, S., Li, C., Sato, E., Tanemura, K., and Wakayama, T. (2013). Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos. PLoS One 8, e78380.
Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWgsb3F&md5=b29aeec8da3902d36a6d3b0ef496bbafCAS | 24205216PubMed |

Tong, G. Q., Heng, B. C., Tan, L. G., and Ng, S. C. (2006). Aberrant profile of gene expression in cloned mouse embryos derived from donor cumulus nuclei. Cell Tissue Res. 325, 231–243.
Aberrant profile of gene expression in cloned mouse embryos derived from donor cumulus nuclei.Crossref | GoogleScholarGoogle Scholar | 16596391PubMed |

Tsubouchi, T., Soza-Ried, J., Brown, K., Piccolo, F. M., Cantone, I., Landeira, D., Bagci, H., Hochegger, H., Merkenschlager, M., and Fisher, A. G. (2013). DNA synthesis is required for reprogramming mediated by stem cell fusion. Cell 152, 873–883.
DNA synthesis is required for reprogramming mediated by stem cell fusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1OqtLs%3D&md5=f81761ff972188871b9fa4e1af80ca19CAS | 23415233PubMed |

Wagschal, A., Sutherland, H. G., Woodfine, K., Henckel, A., Chebli, K., Schulz, R., Oakey, R. J., Bickmore, W. A., and Feil, R. (2008). G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol. Cell. Biol. 28, 1104–1113.
G9a histone methyltransferase contributes to imprinting in the mouse placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWqu70%3D&md5=3b5d26bd28d0600058eb68e3544ad9cfCAS | 18039842PubMed |

Wakayama, T. (2007). Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency? J. Reprod. Dev. 53, 13–26.
Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1GntLo%3D&md5=ecdf5f314ac55f30b3a078d0f5bbc785CAS | 17332696PubMed |

Wakayama, S., and Wakayama, T. (2010). Improvement of mouse cloning using nuclear transfer-derived embryonic stem cells and/or histone deacetylase inhibitor. Int. J. Dev. Biol. 54, 1641–1648.
Improvement of mouse cloning using nuclear transfer-derived embryonic stem cells and/or histone deacetylase inhibitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFClsb4%3D&md5=cddce8cd04c81da6bdaab58274888926CAS | 21404185PubMed |

Wilkinson, L. S., Davies, W., and Isles, A. R. (2007). Genomic imprinting effects on brain development and function. Nat. Rev. Neurosci. 8, 832–843.
Genomic imprinting effects on brain development and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFygsbrF&md5=f4186b0956256326a29d6c03a5fff395CAS | 17925812PubMed |

Wu, X., Li, Y., Xue, L., Wang, L., Yue, Y., Li, K., Bou, S., Li, G. P., and Yu, H. (2011). Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos. Zygote 19, 31–45.
Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVSgtw%3D%3D&md5=d3f87bf27eabeee4cd5cd950d7daab29CAS | 20609268PubMed |

Yamazaki, Y., Fujita, T. C., Low, E. W., Alarcón, V. B., Yanagimachi, R., and Marikawa, Y. (2006). Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos. Mol. Reprod. Dev. 73, 180–188.
Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslygtQ%3D%3D&md5=0beb3296ed7192d70dd048493d82b854CAS | 16245355PubMed |

Yang, X. Y., Li, H., Ma, Q. W., Yan, J. B., Zhao, J. G., Li, H. W., Shen, H. Q., Liu, H. F., Huang, Y., Huang, S. Z., Zeng, Y. T., and Zeng, F. (2006). Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer. Reproduction 132, 733–739.
Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWktbrK&md5=9f9afa9265cd799b49ff432b909847ccCAS | 17071774PubMed |

Yang, X., Smith, S. L., Tian, X. C., Lewin, H. A., Renard, J. P., and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302.
Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOktro%3D&md5=b4643afd562847bf35645aa00fd0fe35CAS | 17325680PubMed |

Yao, J., Huang, Y., Huang, R., Shi, R., Chen, P., Zhu, B., Li, M., Jiang, X., Zheng, M., Jiang, Y., and Yang, X. (2012). Epigenetic modifications and mRNA levels of the imprinted gene Grb10 in serially passaged fibroblast cells. Biochimie 94, 2699–2705.
Epigenetic modifications and mRNA levels of the imprinted gene Grb10 in serially passaged fibroblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kjtb%2FM&md5=8d0dd1ca5f050047f92172d9b47832e9CAS | 22971350PubMed |