Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

31 FULL-TERM AND LIVE RABBIT CLONES PRODUCED BY SOMATIC CELL NUCLEAR TRANSFER

F. Du A , J. Xu A , S. Gao B , L. Y. Sung B , D. Stone B , M. Joyner B , J. Zhang C , S. Chaubal B , X. Tian B , Y. E. Chen C and X. Yang B
+ Author Affiliations
- Author Affiliations

A Evergen Biotechnologies, Inc., Storrs, CT 06269, USA

B Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269, USA

C Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30314, USA

Reproduction, Fertility and Development 18(2) 124-124 https://doi.org/10.1071/RDv18n2Ab31
Published: 14 December 2005

Abstract

Transgenic/knockout (KO) rabbits can serve as an excellent animal model for human cardiovascular diseases (CVD) and other diseases. However, the production of transgenic/KO rabbits is hindered by low efficiency of traditional DNA microinjection and the unavailability of embryonic stem cell lines. An alternative approach is to produce transgenic/KO rabbits by somatic cell nuclear transfer (SCNT) using genetically modified somatic cells as nuclear donors. Our initial objective of the study was to prove the feasibility of cloning rabbits by SCNT because rabbit is a difficult species to be cloned. Rabbit oocytes were flushed from the oviducts of superovulated donors treated with the regime of follicle-stimulating hormone (FSH) and human choriani gonadotropin (hCG). Cumulus cells were then denuded from the oocytes by incubation in 0.5% hyaluronidase and pipetting. Oocyte enucleation was conducted in M199 + 10% fetal bovine serum (FBS) and confirmed by fluorescence microscopy. Cumulus cells used for nuclear donors were prepared from fresh cumulus-oocytes complexes. The donor nucleus was transferred into a recipient oocyte by either cell fusion or direct nuclear injection method. In the cell fusion method, a small donor cell with the diameter approximately 15–19 µm was transferred into the perivitelline space of an enucleated oocyte; subsequently the somatic cell-cytoplast pair was fused by applying three direct current pulses at 3.2 kV/cm for a duration of 20 µs/pulse. In the direct nuclear injection method, a mechanically lysed donor cell was injected into oocyte cytoplasm with the aid of a piezo-drill system. Fused embryos or injected oocytes were activated by the same electrical stimulation regime described above, and subsequently cultured in M199 + 10% FBS containing 2.0 mM 6-dimethylaminopurine (DMAP) and 5 µg/mL cycloheximide for 2 h. For the in vitro study, cloned embryos were cultured in B2 medium plus 2.5% FBS for 5 days (initiation of activation = day 0) at 38.5°C in 5% CO2 humidified air. For the in vivo study, cloned embryos were cultured for 20–22 h in vitro before transfer into pseudopregnant rabbit recipients. Pregnancy was monitored by palpation and/or ultrasound on Days 14–16 post embryo transfer (ET). The results (Table 1) show that the donor nuclei-introducing rate was higher with nuclear direct injection than with the cell fusion method (P < 0.05). There were no significant differences among subsequent cleavage and development to morula and blastocysts between both methods, although the development rates of cloned embryos via electrically mediated fusion were higher than those derived from the injection group. One recipient in the injection group (1/6, 17%) and six recipients in the fusion group (6/16, 38%) were diagnosed as pregnant. From the fusion group, one full-term but stillborn and one live and healthy clone rabbit were delivered on Days 33 and 31 post-ET, respectively. To our knowledge, this is the second report of full term development of cloned rabbit by somatic nuclear transfer cloning. Our further study is to clone live rabbit offspring with modified transgenic/KO somatic cell lines.


Table 1. In vitro development of rabbit cloned embryos with cumulus cells as nuclear donors
Click to zoom

This work was supported by NIH/NCRR-SBIR grant: 1R43RR020261–11.