Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

295 SUPEROVULATORY RESPONSE IN COWS FOLLOWING SYNCHRONIZATION OF FOLLICLE WAVE EMERGENCE WITH ESTRADIOL AT DIFFERENT STAGES OF THE ESTROUS CYCLE

A. Garcia Guerra A , G. A. Bó B , J. Villarreal A and G. M. Brogliatti A
+ Author Affiliations
- Author Affiliations

A Centro genetico Bovino Eolia S.A., Marcos Paz, Buenos Aires, Argentina;

B Instituto de Reproduccion Animal de Cordoba, Argentina

Reproduction, Fertility and Development 20(1) 227-228 https://doi.org/10.1071/RDv20n1Ab295
Published: 12 December 2007

Abstract

Ovarian asynchrony and variability in response to superstimulation remain the most limiting factors in any embryo transfer program (Armstrong D 1993 Theriogenology 39, 7–24). Ovarian response can be increased and less variable if superstimulatory treatment is started at the time of follicular wave emergence (Bö GA et al. 1995 Theriogenology 43, 31–40). A combination of progesterone (P4) and estradiol have been used to synchronize follicular wave for superstimulation. A retrospective analysis was done to compare the ovarian response, superovulatory response and embryo production of cows in Argentina that received progesterone and estradol prior to superstimulation at different stages of the estrous cycle. This research was carried out using different breed of donors (n = 584, 88% Angus) during the last 4 years in Buenos Aires province, Argentina. Heat detection was performed twice a day. At random stages of the estrous cycle, donors received an intravaginal progesterone device (DIB; Syntex, Buenos Aires, Argentina), 2 mg of estradiol benzoate and 50 mg of progesterone (Syntex, Buenos Aires, Argentina) IM on the same day. On day 4 after DIB insertion, superestimulatory treatment was initiated on a decreasing dose regimen of FSH (Pluset; Callier, Spain, or Folltropin, Bioniche Animal Health Inc., Belleville, Ontario, Canada) as IM injections every 12 h over 4 d. On day 6, DIBs were removed, and cows received two doses of 2 mL of cloprostenol 12 h apart. At heat detection, all donors received a dose of 2 mL of GnRH (Dalmarelin; Fatro Von Franken, Buenos Aires, Argentina) by IM injection and were inseminated 12 and 24 h later. Seven days later, embryo collection was performed and ovarian response was evaluated as number of CL + unovulated follicles by transrectal ultrasound using a 7.5-MHz transducer (Pie Medical, Maastricht, the Netherlands). Ova/embryos were evaluated and classified according to the IETS manual. Donors were assigned to receive DIB and estradiol during the following stages of the cycle: group 1: between days 4 and 7 post-estrus (dominant follicle period), group 2: between days 8 and 12 post-estrus (emergence of the second follicular wave), and group 3: between days 13 and 21 post-estrus (dominant follicle of the second wave). Kruskal-Wallis test was used to compare variables among groups, and results are shown in Table 1. Ovarian response as CL + unovulated follicles and number of ovulations were significantly different among groups (P < 0.05). However, there was no significant difference in the number of fertilized ova or transferable embryos. Nevertheless, numeric differences that show that group 2 (started between days 8 and 12 post-estrus) was always superior for all variables. In conclusion, data suggest that estradiol may be more effective in synchronizing follicle wave emergence for superstimulation during the mid-part of the estrous cycle.


Table 1. Superovulatory response in cows in which follicle wave emergence was synchronized with estradiol at different stages of the estrous cycle (mean ± SD)
Click to zoom

Research supported by Centro Genetico Bovino Eolia S.A.