CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


Article << Previous     |     Next >>   Contents Vol 22(1)


M. Romek A, B. Gajda B, M. Rolka A, Z. Smorag B

A Institute of Zoology, Jagiellonian University, 30-060 Krakow, Poland;
B National Research Institute of Animal Production, 32-083 Balice/Krakow, Poland
 Export Citation


Preimplantation pig embryos undergo modifications in their metabolism. Glucose is metabolized via aerobic and anaerobic pathways at early cleavage stages, whereas glycolysis becomes the dominant pathway as development progresses. Moreover, fatty acid oxidation rate increases significantly at the early blastocyst stage. It is possible that mitochondria undergo structural and functional changes in response to altering embryo metabolism. Therefore, the aim of this study was to estimate changes in surface density of inner mitochondrial membranes (Sv) and mitochondrial activity (Av) per unit volume of mitochondria during the maturation of oocyte and early development of porcine embryos derived in vivo. The measurements were carried out on immature and matured oocytes, zygotes, 4 to 8 cell embryos, morula, blastocysts, and late and hatched blastocysts (10 to 39 embryos per stage). To estimate Sv, material was stained with mixture of 1.05 μM 10-N-nonyl Acridine Orange (NOA) and 0.5 μM Mito Tracker Deep Red (MtDR) for 30 min at 20°C. To measure Av, oocytes and embryos were labeled sequentially with 0.5μM Mito Tracker Orange CMTMRos (MtOR) for 30 min at 39°C and 0.5 μM MtDr for 30 min at 20°C. Embryos were then fixed in 3.8% formaldehyde and analyzed by confocal microscopy with a LSM 510 Meta Zeiss. The amounts of fluorescence emitted from embryos labeled as INOA, IMtOR, and IMtDR were measured because these ratios were directly proportional to Sv and Av, respectively. Values Sv and Av calculated for embryos at different stages of development were compared by ANOVA and Tukey’s intervals. During oocyte maturation, Av was low and remained unchanged, whereas Sv significantly decreased (P < 0.05) from 0.26 ± 0.021 f.a.u. (fluorescence arbitrary units) at immature oocytes to 0.11 ± 0.012 f.a.u. at matured oocytes. From the zygote to morula stage, Av was constant and then increased almost 5 times to the value of 0.95 ± 0.036 f.a.u. at the blastocyst stage, whereas late and hatched blastocyst characterized by significantly lower (P < 0.001) Av: 0.51 ± 0.023 and 0.34 ± 0.019 f.a.u., respectively. Surface density of the inner mitochondrial membrane in pig embryo during cleavage significantly (P < 0.05) increased from 0.16 ± 0.013 f.a.u. at zygote to 0.35 ± 0.020 and 0.75 ± 0.059 f.a.u. at morula and blastocyst, respectively. In conclusion, during the early stage of pig embryo development, mitochondria undergo structural and functional changes. Results demonstrate that the area density of inner mitochondrial membranes increases earlier (at 4 to 8 cell stages) than mitochondrial activity, which increase not before blastocyst stage. Furthermore, after blastocoel formation, when energy requirement is significantly lower, Av decrease but Sv remain constant.

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015