Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

294 USE OF FORSKOLIN TO PRODUCE IN VITRO BOVINE EMBRYOS UNDER TWO CONCENTRATIONS OF FETAL CALF SERUM

D. M. Paschoal A , M. J. Sudano A , L. C. O. Magalhães A , L. F. Crocomo A and F. C. Landim-Alvarenga A
+ Author Affiliations
- Author Affiliations

São Paulo State University, Botucatu, Brazil

Reproduction, Fertility and Development 22(1) 303-304 https://doi.org/10.1071/RDv22n1Ab294
Published: 8 December 2009

Abstract

The increased storage of lipid granules in in vitro-produced (IVP) bovine embryos seems to be related to the presence and concentration of fetal calf serum (FCS) during culture. The presence of high concentration of lipids on embryos reduces their viability after cryopreservation, which has been one of the main obstacles for the success of vitrification of IVP bovine embryos (Moore et al. 2007 Theriogenology 68, 1316-1325). The present experiment aimed to induce cytoplasmic lipolysis in IVP bovine embryos using forskolin (Sigma-Aldrich, St. Louis, MO, USA), which raises the levels of intracellular cAMP (Seamon et al. 1981 Proc. Natl. Acad. Sci. USA, 78, 3363-3367). Nelore oocytes were matured in TCM-199 + 10% FCS, FSH, and LH in 5% CO2 in air atmosphere, at 38.5°C. After 24 h of maturation, oocytes were fertilized in human tubal fluid (HTF, Irvine, New Zealand) under the same conditions. Presumptive zygotes were cultured in 2 concentrations of FCS: Control 0% (SOFaa + 5 mg mL-1 BSA; basic medium, BM), and Control 2.5% (BM supplemented with 2.5% FCS). On Day 6 of culture embryos were divided into 2 additional treatments: Forskolin 0% (BM + 10 μM forskolin; and Forskolin 2.5% (BM supplemented with 2.5% FCS and 10 μM forskolin). All embryos were cultured in a 5% CO2, 5%O2, and 90% N2 atmosphere at 38.5°C for 7 days, when blastocyst formation rate was evaluated. Embryo viability was also checked by staining the embryos with Hoechst 33342 and propidium iodide. Data were analyzed by ANOVA followed by Tukey’s test, using a 5% significance level. No statistical differences were observed among treatments on cleavage rates, evaluated on Day 3 of culture, or on blastocyst formation rates. Although no statistical differences was observed between treatments on percentage of viable cells, embryos cultured with 0% FCS, independently of the presence of forskolin, presented significantly more damaged cells than embryos cultured with 2.5% FCS (P < 0.05). The results indicate that the presence of FCS is important to reduce degeneration of blastomeres during culture. Moreover, the presence of forskolin on Day 6 of culture did not influence embryo development, indicating that this drug could be a good alternative to reduce embryo lipid content in bovine IVP embryos produced in presence of FCS.


Table 1.  Effect of fetal calf serum and forskolin on embryo culture
T1

Acknowledgments: FAPESP 07/53505-1.