CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


 

Article << Previous     |     Next >>   Contents Vol 22(1)

398 DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELLS INTO CARDIOMYOCYTES BY USING SLOW TURNING LATERAL VESSEL (STLV/BIOREACTOR)

S. Rungarunlert A, K. Tar C, S. Muenthaisong C, M. Techakumphu B, M. Pirity C, A. Dinnyes A

A Molecular Animal Biotechnology Laboratory, Szent Istvan University, Gödöllö, Hungary;
B Department of Obstetrics, Gynecology and Reproduction, Faculty ofVeterinary Science, Chulalongkorn University, Bangkok, Thailand;
C BioTalentum Ltd., Gödöllö, Hungary
 
 Export Citation
 Print
  


Abstract

Cardiomyocytes derived from embryonic stem (ES) cells are anticipated to be valuable for cardiovascular drug testing and disease therapies. The overall efficiency and quantity of cardiomyocytes obtained by differentiation of ES cells is still low. To enable a large-scale culture of ES-derived cells, we have tested a scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, bioreactor/STLV (slow turning lateral vessel, Synthecon, Inc., Houston, TX, USA) following inoculation with a single cell suspension of mouse ES cells. Technical parameters for optimal cell expansion and efficient ES cell differentiation were compared, such as ES cell seeding density (3 × 105 and 5 × 105 cells mL-1) into the bioreactor and day of transfer and plating of EB on gelatinated petri dishes (Day 2, Day 3, Day 4, and Day 5). The quantity and quality of EB production including the yield and size of EB, as well as viability and apoptosis of cells, were analyzed. Furthermore, after cultivation, well-developed contracting EB with functional cardiac muscle were obtained in which the percentage of EB beating/well and several specific cardiac genes [cardiac Troponin T (cTnT) and α-actinin] expression were also determined. Data are expressed as mean ± SEM of at least 3 independent experiments. Statistical analyses included one-way ANOVA and Student’s t-test Statistical significance was set at P < 0.05. The results showed that 5 × 105 ES cells mL-1 seeded into the STLV significantly improved the homogeneity of size of EB formed compared with 3 × 105 ES cells mL-1. The EB derived from Days 2 or 3 culturing in STLV had less necrotic cells than Days 4 and 5 groups. Furthermore, plating these EB on Days 2 and 3 resulted in significantly more EB beating/well than that of Days 4 and 5 groups. For cardiac differentiation, the group with 5 × 105 ES cells mL-1 seeded into STLV and transferred and plated on Day 3 expressed more cardiac markers than other groups. In conclusion, the optimized rotary suspension culture method can produce a highly uniform population of efficiently differentiating EB in large quantities in a manner that can be easily implemented by basic research laboratories. This method provides a technological platform for the controlled large-scale generation of ES cell-derived cells for clinical and industrial applications.

   
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014