Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

224 LOCALIZATION OF NITRIC OXIDE SYNTHASE ACTIVITY IN BUFFALO (BUBALUS BUBALIS) OOCYTES AND EMBRYOS

K. R. Babu A , R. Sharma A , K. P. Singh A , A. George A , M. S. Chauhan A , S. K. Singla A , R. S. Manik A and P. Palta A
+ Author Affiliations
- Author Affiliations

National Dairy Research Institute, Karnal, Haryana, India

Reproduction, Fertility and Development 23(1) 211-211 https://doi.org/10.1071/RDv23n1Ab224
Published: 7 December 2010

Abstract

Ovarian nitric oxide (NO) and that produced within the oocytes and embryos have been reported to play important roles in oocyte meiotic maturation and embryo development. Production of NO is catalyzed by NO synthase (NOS), which exists in 3 isoforms, the constitutive endothelial (eNOS) and neuronal (nNOS) isoforms and the inducible (iNOS) isoform. We have previously shown that low concentrations of NO stimulate and high concentrations inhibit embryo development, and that endogenous NO produced by iNOS is necessary for optimal embryo development in the buffalo. The present study was aimed at localizing different isoforms of NOS and examining their relative mRNA abundance in buffalo oocytes and embryos. Oocytes from slaughterhouse ovaries were subjected to in vitro maturation in 100-μL droplets (10 to 15 oocytes/droplet) of in vitro maturation medium (TCM-199 + 10% FBS + 5 μg mL–1 of pFSH + 1 μg mL–1 of oestradiol-17β + 0.81 mM sodium pyruvate + 10% buffalo follicular fluid + 50 μg mL–1 of gentamicin) for 24 h in a CO2 incubator (5% CO2 in air) at 38.5°C. In vitro fertilization was carried out by incubating in vitro-matured oocytes with 2 to 4 million spermatozoa mL–1 for 18 h. The presumed zygotes were cultured on original beds of cumulus cells in in vitro culture medium (mCR2aa + 0.6% BSA + 10% FBS) for up to 8 days post-insemination. Immature and in vitro-matured oocytes and embryos at the 2-cell, 4-cell, 8- to 16-cell, morula, and blastocyst stages were examined for the presence of NOS isoforms by indirect immunofluorescence staining using epifluorescence microscopy and RT-PCR. Each experiment was repeated in triplicate, and data were analysed using one-way ANOVA, after arcsine transformation of percentage values. Expression of all 3 NOS isoforms was detected inside the cytoplasm, in all the stages of oocytes and embryos examined, by both immunofluorescence and RT-PCR. Abundance of the iNOS transcript was significantly higher (P ≤ 0.01) in the morula and blastocyst stages compared with that in immature and in vitro-matured oocytes and in embryos at the 2-cell, 4-cell, and 8- to 16-cell stages, indicating that its expression was up-regulated at the 8- to 16-cell stage. The expression of eNOS was significantly higher (P ≤ 0.05) in the immature and mature oocytes and in 8- to 16-cell stage embryos, morulae, and blastocysts than in the early-cleavage embryos at the 2- and 4-cell stages, indicating that it was down-regulated after fertilization and was up-regulated again at the 8- to 16-cell stage. Abundance of the nNOS transcript was not significantly different among all the stages of oocytes and embryos examined. These results demonstrate that different NOS isoforms are expressed in a dynamic manner during embryonic development in the buffalo. The role of an increase in expression of iNOS and eNOS at the 8- to 16-cell stage, at which a developmental block occurs in this species, needs to be examined.