Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

56 THE EFFECT OF VITRIFICATION FOR SHEEP OOCYTES VIABILITY

Y. M. Toishibekov A , R. K. Tursunova A and M. Sh. Yermekova A
+ Author Affiliations
- Author Affiliations

Institute of Experimental Biology, Almaty, Kazakhstan

Reproduction, Fertility and Development 27(1) 121-121 https://doi.org/10.1071/RDv27n1Ab56
Published: 4 December 2014

Abstract

Advances in reproduction technologies, such as in vitro maturation, IVF, and in vitro culture, stimulated research for efficient cryopreservation techniques for mammalian oocytes. It is well known that the oocyte is the largest cell of an animal's body and as such, is full of water and, in many species, fat, making it difficult to cryopreserve. The objective of this work was to study the effect of vitrification for cryopreservation of the metaphase II plate (MPII) of sheep oocytes. Ovaries from 20 ewes of Kazakh Arkharo-Merino breed were acquired after slaughter and maintained at 37°C in TCM-199. The maturation medium was TCM-199, containing 1 mM of glutamine, 10% FBS, 5 μg mL–1 FSH, 5 μg mL–1 LH, 1 μg mL–1 oestradiol, 0.3 mM sodium pyruvate, and 100 mM cysteamine. The oocytes were incubated in 400 μL of medium in 4-well dishes covered with mineral oil. The IVM conditions were 5% CO2 in humidified air at 39°C for 24 h. Then they were placed for 10 min in a media with Hoechst 33342 (3 μg mL–1) and cytochalasin B (7 μg mL–1) to facilitate the enucleation of the MPII with a minimum volume of ooplasm. The MPII plates were divided into 2 groups: the vitrification group was exposed to vitrification media containing 1.12 M ethylene glycol (ET) + 0.87 M ME2SO for 5 min and was exposed in vitrification media containing 2.24 M ET + 1.75 M ME2SO for 5 min, and then in vitrification solution containing 4.48 M ET + 40% ME2SO + 0.25 M sucrose for 30 s. Oocytes were loaded into cryoloop and plunged into liquid nitrogen (LN2). Oocytes were thawed in a 25°C water bath and then placed in TCM-199 at 20% fetal bovine serum. After 15 min of incubation the oocytes were activated for extrusion of the second polar body in 1 mg mL–1 Ca ionophore for 5 min and washed for 5 min followed by 4 h in 6-DMAP (0.12 mM) + cycloheximide (0.6 μg mL–1). After activation the MPII were washed and cultured for 20 h. The control group received the same treatment, but they were not vitrified. Differences between the experimental groups were tested using Chi-squared test. Our research showed the expulsion of the second polar body after activation was observed in more than 62.2% of the MPII that were not vitrified (control group), whereas 40.5% of vitrified plates had expulsion of polar bodies (P < 0.05). These preliminary studies showed that it is possible to vitrify MPII plates. On the other hand, the drastic reduction of the volume of the sheep oocytes might make cryopreservation possible with greater efficiency.