Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Morphology, physiology and AFLP markers validate that green box is a hybrid of Eucalyptus largiflorens and E. gracilis (Myrtaceae)

Georgia R. Koerber A B , Peter A. Anderson A and Jack V. Seekamp A C
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide, SA 5001, Australia.

B Corresponding author. Email: g.koerber@internode.on.net

C Deceased 11 February 2007.

Australian Systematic Botany 26(2) 156-166 https://doi.org/10.1071/SB12034
Submitted: 20 July 2012  Accepted: 12 January 2013   Published: 28 June 2013

Abstract

Prolonged drought and salinity on the Chowilla floodplain of the Murray River have caused deterioration of E. largiflorens F.Muell. A putative hybrid with E. gracilis F.Muell, green box, withstands the saline conditions. We aimed to substantiate that green box is a hybrid and to test for agreement between morphological and physiological characters with amplified fragment length polymorphisms (AFLP). Mature stands were measured for leaf, trunk, floral, cotyledon, carbon and nitrogen isotope discrimination, specific leaf area (SLA) and AFLP. Green box was placed between E. largiflorens and E. gracilis according to categorical principal components analysis (CATPCA) of 21 morphological and physiological characters and character states. The hybrid index of 11 AFLP markers that were 78% species specific separated E. gracilis and E. largiflorens, and the majority of green box plants displayed indices ranging from 0.42 to 0.53, reflecting mostly additive inheritance. Calculation of the hybrid index with all 232 AFLP markers, using maximum likelihood, similarly placed green box between E. gracilis and E. largiflorens. Our morphological, physiological and AFLP-marker observations substantiated that green box is a hybrid between E. largiflorens and E. gracilis.


References

Arnold ML (1994) Natural hybridisation and Louisiana irises. Defining a major factor in plant evolution Bioscience 44, 141–147.
Natural hybridisation and Louisiana irises. Defining a major factor in plant evolutionCrossref | GoogleScholarGoogle Scholar |

Bartish IV, Rumpunen K, Nybom H (2000) Combined analyses of RAPDs, cpDNA and morphology demonstrate spontaneous hybridisation in the plant genus Chaenomeles. Heredity 85, 383–392.
Combined analyses of RAPDs, cpDNA and morphology demonstrate spontaneous hybridisation in the plant genus Chaenomeles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFWrsw%3D%3D&md5=cde7ac62a327554edf5da059c0cf4645CAS | 11122416PubMed |

Belbin L (1994) ‘PATN Pattern Analysis Package Technical Reference.’ (Division of Wildlife and Ecology, CSIRO: Melbourne)

Borgatti SP (1997) Multidimensional scaling. Available at http://www.analytictech.com/borgatti/mds.htm [Verified 29 January 2013]

Brooker MIH (2000) A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Australian Systematic Botany 13, 79–148.
A new classification of the genus Eucalyptus L’Her. (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Brooker MIH, Kleinig DA (1990) ‘Field Guide to Eucalypts. Vol. 2, South-western and Southern Australia.’ (Inkata Press Proprietary Ltd: Melbourne)

Byrne M, Moran GF, Tibbits WN (1993) Restriction map and maternal inheritance of chloroplast DNA in Eucalyptus nitens. The Journal of Heredity 84, 218–220.

Byrne M, Marquez-Garcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Australian Journal of Botany 44, 331–341.
Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xltleku7c%3D&md5=48fa80676bae2887a6451b028b06e80dCAS |

Dawson TE, Brooks PD (2001) Fundamentals of stable isotope chemistry and measurement. In ‘Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems’. (Eds MJ Unkovich, JS Pate, A McNeill, J Gibbs) pp. 1–18. (Kluwer Academic Publishers: Dordrecht, the Netherlands)

Delaporte KL, Conran JG, Sedgley M (2001) Interspecific hybridisation within Eucalyptus (Myrtaceae): subgenus Symphyomyrtus, sections Bisectae and Adnataria. International Journal of Plant Sciences 162, 1317–1326.
Interspecific hybridisation within Eucalyptus (Myrtaceae): subgenus Symphyomyrtus, sections Bisectae and Adnataria.Crossref | GoogleScholarGoogle Scholar |

Doyle JJ (1991) DNA protocols for plants. In ‘Molecular Techniques in Taxonomy’. (Ed. GM Hewitt) pp. 283–293. (Springer-Verlag: Berlin)

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503–537.
Carbon isotope discrimination and photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlKmu70%3D&md5=2b72d6e9ba6b857cdcc78cb65a3a2df9CAS |

Fritz RS, Nichols-Orians CM, Brunsfeld SJ (1994) Interspecific hybridisation of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97, 106–117.
Interspecific hybridisation of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community.Crossref | GoogleScholarGoogle Scholar |

Gaiotto FA, Bramucci M, Grattapaglia D (1997) Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers. Theoretical and Applied Genetics 95, 842–849.
Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1Oku7g%3D&md5=dcf984178e4b32ccc31ea562d987a3eeCAS |

Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridisation in the genus Eucalyptus L’ Herit. – a review. Australian Journal of Botany 36, 41–66.
Patterns of natural and manipulated hybridisation in the genus Eucalyptus L’ Herit. – a review.Crossref | GoogleScholarGoogle Scholar |

Hansen LB, Siegismund HR, Jørgensen RB (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genetic Resources and Crop Evolution 48, 621–627.
Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population.Crossref | GoogleScholarGoogle Scholar |

Hardig TM, Brunsfeld SJ, Fritz RS, Morgan M, Orians CM (2000) Morphological and molecular evidence for hybridisation and introgression in a willow (Salix) hybrid zone. Molecular Ecology 9, 9–24.
Morphological and molecular evidence for hybridisation and introgression in a willow (Salix) hybrid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1altrk%3D&md5=d3275a2227f35f9ed3fcd895e929d525CAS | 10652072PubMed |

Jessop JP, Toelken HR, Black JM (1986) ‘Flora of South Australia.’ (South Australian Government Printing Division: Adelaide)

Koerber GR, Seekamp JV, Anderson PA, Whalen MA, Tyerman SD (2012) A putative hybrid of Eucalyptus largiflorens growing on salt- and drought-affected floodplains has reduced specific leaf area and leaf nitrogen Australian Journal of Botany 60, 358–367.
A putative hybrid of Eucalyptus largiflorens growing on salt- and drought-affected floodplains has reduced specific leaf area and leaf nitrogenCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVWmsbY%3D&md5=e429f5ad33fbfdd143aee7468f20c9ccCAS |

Koopman WJM, Wissemann V, De Cock K, Van Huylenbroeck J, De Riek J, Sabatino GJH, Visser D, Vosman B, Ritz CM, Maes B, Werlemark G, Nybom H, Debener T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). American Journal of Botany 95, 353–366.
AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlyjs7g%3D&md5=7c31b192c83970c12bb4627454866c9cCAS |

Krauss SL (1999) Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP). Molecular Ecology 8, 217–226.
Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVOgu70%3D&md5=6799ba77973bc03ad67c2506430e4598CAS |

Krauss SL (2000) The realised effect of postpollination sexual selection in a natural plant population. Proceedings of the Royal Society of London 267, 1925–1929.
The realised effect of postpollination sexual selection in a natural plant population.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzjvVaisw%3D%3D&md5=9f0aa346e4a19ac25b4f8e7dbc1a41beCAS |

Kuittinen H, Mattila A, Savolainen O (1997) Genetic variation at marker loci and in quantitative traits in natural populations of Arabidopsis thaliana. Heredity 79, 144–152.
Genetic variation at marker loci and in quantitative traits in natural populations of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 9279010PubMed |

Lewontin RC, Birch LC (1966) Hybridisation as a source of variation for adaption to new environments. Evolution 20, 315–336.
Hybridisation as a source of variation for adaption to new environments.Crossref | GoogleScholarGoogle Scholar |

Marques CM, Araujo JA, Ferreira JG, Whetten R, O’Malley DM, Liu BH, Sederoff R (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theoretical and Applied Genetics 96, 727–737.
AFLP genetic maps of Eucalyptus globulus and E. tereticornis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFSitbk%3D&md5=c7e3544241d7ded8fe0c578c1ce23085CAS |

McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2008) An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae). American Journal of Botany 95, 368–380.
An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlyjs7Y%3D&md5=f1f83d038b99cbf468a8fac7f2b2b82fCAS | 21632361PubMed |

McKinnon GE, Smith JJ, Potts BM (2010) Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Molecular Ecology 19, 1367–1380.
Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWhtrk%3D&md5=91e9850de9e232079ef079ce4a10288fCAS | 20298471PubMed |

Nesbitt KA, Potts BM, Vaillancourt RE, West AK, Reid JB (1995) Partitioning and distribution of RAPD variation in a forest tree species, Eucalyptus globulus (Myrtaceae). Heredity 74, 628–637.
Partitioning and distribution of RAPD variation in a forest tree species, Eucalyptus globulus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Neuffer B, Auge H, Mesch H, Amarell U, Brandl R (1999) Spread of violets in polluted pine forests: morphological and molecular evidence for the ecological importance of interspecific hybridization. Molecular Ecology 8, 365–377.

O’Hanlon PC, Peakall R, Briese DT (1999) Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridisation and invasion. Molecular Ecology 8, 1239–1246.
Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridisation and invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVOitLo%3D&md5=09b9c72b4e03a9bd1dd6b3a413954f72CAS | 10447865PubMed |

Overton I, Doody T (2010) Ecosystem response modelling in the Chowilla Floodplain, Lindsay and Wallpolla Islands icon site. In ‘Ecosystem Response Modelling in the Murray–Darling Basin’. (Eds N Saintilan, I Overton) pp. 357–372. (CSIRO Publishing: Melbourne)

Overton IC, Jolly ID, Slavich PG, Lewis MM, Walker GR (2006) Modelling vegetation health from the interaction of saline groundwater and flooding on the Chowilla floodplain, South Australia. Australian Journal of Botany 54, 207–220.
Modelling vegetation health from the interaction of saline groundwater and flooding on the Chowilla floodplain, South Australia.Crossref | GoogleScholarGoogle Scholar |

Parker GD (1998) Identification of molecular markers linked to quantitative traits and disease resistance genes in wheat (Triticum aestivum L.). PhD thesis, The University of Adelaide, Adelaide

Parsons RF, Zubrinich TM (2010) The green-leaved variant of Eucalyptus largiflorens: a story involving hybridization and observant local people. Cunninghamia 11, 413–416.

Potts BM, Wiltshire RJE (1997) Eucalypt genetics and genecology. In ‘Eucalypt Ecology, Individuals to Ecosystems’. (Eds JE Williams, JCZ Woinarski) pp. 56–91. (Press Syndicate of the University of Cambridge: Cambridge, UK)

Powell W, Thomas WTB, Baird E, Lawrence P, Booth A, Harrower B, McNicol JW, Waugh R (1997) Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79, 48–59.
Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlKjsLk%3D&md5=faacd6e94b0445fb2322462246cd5fddCAS |

Rieseberg LH, Choi H, Chan R, Spore C (1993) Genomic map of a diploid hybrid species. Heredity 70, 285–293.
Genomic map of a diploid hybrid species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Cntb4%3D&md5=823ded829a2e8a5c0d77d2a7e0856561CAS |

Rieseberg LH, Baird SJE, Desrochers AM (1998) Patterns of mating in wild sunflower hybrid zones. Evolution 52, 713–726.
Patterns of mating in wild sunflower hybrid zones.Crossref | GoogleScholarGoogle Scholar |

Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129, 149–165.
Hybridization and the colonization of novel habitats by annual sunflowers.Crossref | GoogleScholarGoogle Scholar | 16955330PubMed |

Sedgley M, Sierp MG, Maguire TL (1994) Interspecific hybridisation involving Banksia prionotes Lind. and B. menziesii R.Br. (Proteaceae). International Journal of Plant Sciences 155, 755–762.
Interspecific hybridisation involving Banksia prionotes Lind. and B. menziesii R.Br. (Proteaceae).Crossref | GoogleScholarGoogle Scholar |

Sharley T, Huggan C (1995) Chowilla Resource Management Plan. Murray–Darling Basin Commission’s Chowilla Working Group, 0730846970, Canberra.

Smulders MJM, Beringen R, Volosyanchuk R, Vanden Broeck A, van der Schoot J, Arens P, Vosman B (2008) Natural hybridisation between Populus nigra L. and P. × canadensis Moench. Hybrid offspring competes for niches along the Rhine River in the Netherlands. Tree Genetics & Genomes 4, 663–675.
Natural hybridisation between Populus nigra L. and P. × canadensis Moench. Hybrid offspring competes for niches along the Rhine River in the Netherlands.Crossref | GoogleScholarGoogle Scholar |

Sneath PHA, Sokal RR (1963) ‘Numerical taxonomy; the principles and practice of numerical classification.’ (W.H. Freeman Company: San Francisco, CA)

Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Molecular Phylogenetics and Evolution 59, 206–224.
Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping.Crossref | GoogleScholarGoogle Scholar | 21310251PubMed |

Stokoe RL, Shepherd M, Lee DJ, Nikles GD, Henry RJ (2001) Natural inter-subgeneric hybridisation between Eucalyptus acmenoides Schauer and Eucalyptus cloeziana F.Muell (Myrtaceae) in southeast Queensland. Annals of Botany 88, 563–570.
Natural inter-subgeneric hybridisation between Eucalyptus acmenoides Schauer and Eucalyptus cloeziana F.Muell (Myrtaceae) in southeast Queensland.Crossref | GoogleScholarGoogle Scholar |

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP – a new technique for DNA-fingerprinting. Nucleic Acids Research 23, 4407–4414.
AFLP – a new technique for DNA-fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=b169853f9f24b06f5131e510cb93b1baCAS | 7501463PubMed |

Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. American Naturalist 167, 794–807.
Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus.Crossref | GoogleScholarGoogle Scholar | 16649157PubMed |

Whitney KD, Randell RA, Rieseberg LH (2010) Adaptive introgression of abiotic tolerance traits in the sunflower Helianthus annuus. New Phytologist 187, 230–239.
Adaptive introgression of abiotic tolerance traits in the sunflower Helianthus annuus.Crossref | GoogleScholarGoogle Scholar | 20345635PubMed |

Wolfe AD, Xiang Q-Y, Kephart SR (1998) Assessing hybridisation in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Molecular Ecology 7, 1107–1125.
Assessing hybridisation in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFOisLs%3D&md5=99152191c31d897beace00505bc444e3CAS | 9734070PubMed |

Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theoretical and Applied Genetics 99, 785–792.
DNA methylation and AFLP marker distribution in the soybean genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVKjt7c%3D&md5=50cfcab487cf27bb3a1bda709662cd48CAS |

Young WP, Ostberg CO, Keim P, Thorgaard GH (2001) Genetic characterisation of hybridisation and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Molecular Ecology 10, 921–930.
Genetic characterisation of hybridisation and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVensbk%3D&md5=dabed665cfb727a39b92d1e379cbcf35CAS | 11348501PubMed |

Zubrinich TM (1996) An investigation of the ecophysiological, morphological and genetic characteristics of Eucalyptus largiflorens F.Muell and Eucalyptus gracilis F.Muell; in relation to soil salinity and groundwater conditions throughout the Chowilla Anabranch. PhD thesis, Flinders University of South Australia, Adelaide.

Zubrinich TM, Loveys B, Gallasch S, Seekamp JV, Tyerman SD (2000) Tolerance of salinized floodplain conditions in a naturally occurring Eucalyptus hybrid related to lowered plant water potential. Tree Physiology 20, 953–963.
Tolerance of salinized floodplain conditions in a naturally occurring Eucalyptus hybrid related to lowered plant water potential.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvgvFWnug%3D%3D&md5=92a26c5e7e6dafa306af17271481fe42CAS | 11303570PubMed |