CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
New Editor-in-Chief
Editorial Board
Contacts
For Advertisers
Content
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Now Online

Land Resources Surveys


 

Article << Previous     |     Next >>   Contents Vol 47(5)

Micronutrient fractionation and plant availability in bauxite-processing residue sand

Chitdeshwari Thiyagarajan A B, I. R. Phillips C, B. Dell D, Richard W. Bell B E

A Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India.
B School of Environmental Science, Murdoch University, Murdoch, WA 6150, Australia.
C Alcoa World Alumina Australia, PO Box 172, Pinjarra, WA 6208, Australia.
D School of Biological Science and Biotechnology, Murdoch University, Murdoch, WA 6150, Australia.
E Corresponding author. Email: r.bell@murdoch.edu.au
 
PDF (164 KB) $25
 Export Citation
 Print
  


Abstract

Bauxite-processing residue must be disposed of in specifically designed facilities for long-term management. Consideration of alkalinity, salinity, sodium content, and poor nutritional status is essential for successful rehabilitation of residue disposal areas (RDA). The aim of this study was to examine the availability and distribution of the micronutrients, B, Cu, Fe, Mn, and Zn, in (i) fresh bauxite-processing residue sand (particle size >150 μm) with and without gypsum amendment, and (ii) aged residue sand from a 4-year-old rehabilitated RDA that had received past gypsum and fertiliser addition. Samples of fresh residue sand from India and Australia exhibited high alkalinity, high salinity, and sodicity. Gypsum addition significantly lowered pH, soluble Na, and alkalinity. Aged residue sand had low levels of all micronutrients, with low extractability for Zn and Mn followed by B, Cu, and Fe. Fractionation showed that 30–78% of Zn and Mn and 40–60% of B existed in non-available (residual) forms. The next most dominant fractions were the Fe and Mn oxide-bound and carbonate-bound fractions. Plant-available fractions (i.e. exchangeable and organically bound) contributed <1% of the total concentration. Total concentration was found to be a reliable indicator for Zn, Cu, and B extractability but not for DTPA-extractable forms of Fe and Mn. Leaf analysis of vegetation grown on aged residue sand indicated deficiencies of Mn and B. Results demonstrated that bauxite-processing residue sand contained very low levels of B, Mn, and Zn and these concentrations may be limiting to plant growth. Distribution of micronutrients among chemical pools was significantly influenced by pH, organic carbon, exchangeable Na, and alkalinity of residue. Nutrient management strategies that account for the characteristics of residue sand need to be developed for residue rehabilitation. Importantly, strategies to limit the conversion of nutrients to non-available forms are required to minimise micronutrient disorders.

Keywords: alkalinity, bauxite residue sand, fractionation, micronutrient availability, spiking.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014