Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Physical quality of a Luvisol under agroforestry systems in a semi-arid region, Brazil

Rafaela Watanabe A , Getulio Coutinho Figueiredo B , Alvaro Pires da Silva B , Júlio César Lima Neves C and Teógenes Senna de Oliveira C D
+ Author Affiliations
- Author Affiliations

A Department of Soil Science, Universidade Federal do Ceará (UFC), Campus Pici, Bloco 807, 60455-760, Fortaleza, CE, Brazil.

B Department of Soil Science, Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP), Avenida Pádua Dias 11, Caixa Postal 09, 13418-900, Piracicaba, SP, Brazil.

C Department of Soils, Universidade Federal de Viçosa, Campus UFV, 36570-000, Viçosa, MG, Brazil.

D Corresponding author. Email: teo@ufv.br

Soil Research 54(4) 430-439 https://doi.org/10.1071/SR15179
Submitted: 26 June 2015  Accepted: 26 September 2015   Published: 20 June 2016

Abstract

Agroforestry systems provide many environmental benefits in semi-arid regions; however, trampling by cattle, and agricultural practices, can degrade physical quality of the soil. The aim of this study was to evaluate the degree of compaction and the compression behaviour of a Luvisol after 14 years under agro-silvopastoral (ASP) and silvopastoral systems (SILV), compared with a soil under natural vegetation (NV). We evaluated the degree of soil compactness, compaction index, pre-consolidation pressure, maximum bulk density, critical water content and the stocks of total organic carbon (C), organic matter (OM), C in light organic matter (LOM), and nitrogen (N) in LOM. The results indicated that agroforestry systems change the compressive behaviour of the soil, increasing maximum bulk density (P < 0.05) and reducing critical water content (P < 0.05). Despite the increases in maximum bulk density, changes induced by agroforestry system did not affect the pore space, as shown by similar values for degree of compactness (P > 0.05) under ASP, SILV and NV. This suggests a change in the quality of OM, as evidenced by the lower values for stocks of N in LOM (P < 0.10) and total organic C (P < 0.05) under ASP and SILV, whereas pre-consolidation pressure was unaffected (P > 0.05). After 14 years, the degree of compactness and load-bearing capacity of the soils under ASP and SILV had not increased, being suitable for plant growth.

Additional keywords: animal trampling, load-bearing capacity, semi-arid, soil compaction, soil physical quality.


References

Aguiar MI, Maia SMF, Oliveira TS, Mendonça ES, Araujo Filho JA (2006) Perdas de solo, água e nutrientes em sistemas agroflorestais no município de Sobral, CE. Revista Ciência Agronômica 37, 270–278.

Altikat S, Celik A (2011) The effects of tillage and intra-row compaction on seedbed properties and red lentil emergence under dry land conditions. Soil & Tillage Research 114, 1–8.
The effects of tillage and intra-row compaction on seedbed properties and red lentil emergence under dry land conditions.Crossref | GoogleScholarGoogle Scholar |

Álvarez CR, Micucci FG, Bustingorri C, Taboada MA (2010) Pedotransfer functions to estimate proctor test parameters under different tillage systems. Revista Brasileira de Ciencia do Solo 34, 1787–1793.
Pedotransfer functions to estimate proctor test parameters under different tillage systems.Crossref | GoogleScholarGoogle Scholar |

Aragón A, García MG, Filgueira RR, Pachepsky YA (2000) Maximum compactibility of Argentine soils from the Proctor test: The relationship with organic carbon and water content. Soil & Tillage Research 56, 197–204.
Maximum compactibility of Argentine soils from the Proctor test: The relationship with organic carbon and water content.Crossref | GoogleScholarGoogle Scholar |

ASTM (1992) ‘Annual book of ASTM standards.’ p. 397. (American Society for Testing and Materials: PA, USA)

Becerra AT, Botta GF, Bravo XL, Tourn M, Melcon FB, Vazquez J, Rivero D, Linares P, Nardon G (2010) Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil & Tillage Research 107, 49–56.
Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España.Crossref | GoogleScholarGoogle Scholar |

Betioli E Jr, Moreira WH, Tormena CA, Ferreira CJB, Silva ÁPd, Giarola NFB (2012) Intervalo hídrico ótimo e grau de compactação de um latossolo vermelho após 30 anos sob plantio direto. Revista Brasileira de Ciencia do Solo 36, 971–982.
Intervalo hídrico ótimo e grau de compactação de um latossolo vermelho após 30 anos sob plantio direto.Crossref | GoogleScholarGoogle Scholar |

Beutler AN, Centurion JF, Silva APd (2005) Soil resistance to penetration and least limiting water range for soybean yield in a haplustox from Brazil. Brazilian Archives of Biology and Technology 48, 863–871.
Soil resistance to penetration and least limiting water range for soybean yield in a haplustox from Brazil.Crossref | GoogleScholarGoogle Scholar |

Blanco-Canqui H, Stone LR, Schlegel AJ, Lyon DJ, Vigil MF, Mikha MM, Stahlman PW, Rice CW (2009) No-till Induced Increase in organic carbon reduces maximum bulk density of soils. Soil Science Society of America Journal 73, 1871–1879.
No-till Induced Increase in organic carbon reduces maximum bulk density of soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSku7rL&md5=c0b06b91268a799ccd1bb852e883a652CAS |

Canarache A, Horn R, Colibas I (2000) Compressibility of soils in a long term field experiment with intensive deep ripping in Romania. Soil & Tillage Research 56, 185–196.
Compressibility of soils in a long term field experiment with intensive deep ripping in Romania.Crossref | GoogleScholarGoogle Scholar |

Carter MR (1990) Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Canadian Journal of Soil Science 70, 425–433.
Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams.Crossref | GoogleScholarGoogle Scholar |

Collares GL, Reinert DJ, Reichert JM, Kaiser DR (2008) Compactação de um latossolo induzida pelo tráfego de máquinas e sua relação com o crescimento e produtividade de feijão e trigo. Revista Brasileira de Ciencia do Solo 32, 933–942.
Compactação de um latossolo induzida pelo tráfego de máquinas e sua relação com o crescimento e produtividade de feijão e trigo.Crossref | GoogleScholarGoogle Scholar |

da Silva AP, Kay BD, Perfect E (1994) Characterization of the least limiting water range of soils. Soil Science Society of America Journal 58, 1775–1781.
Characterization of the least limiting water range of soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlCjsLw%3D&md5=992364d8fbfc4d66c6a638a33ed7c42fCAS |

Dane JH, Hopmans JW (2002) Laboratory. In ‘Methods of soil analysis. Part 4. Physical methods’. (Eds JH Dane, CG Topp) pp. 675–719. (Soil Science Society of America: Madison, WI, USA)

Dias Junior MS, Pierce FJ (1995) A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technology 8, 139–151.
A simple procedure for estimating preconsolidation pressure from soil compression curves.Crossref | GoogleScholarGoogle Scholar |

Díaz-Zorita M, Grosso GA (2000) Effect of soil texture, organic carbon and water retention on the compactability of soils from the Argentinean pampas. Soil & Tillage Research 54, 121–126.
Effect of soil texture, organic carbon and water retention on the compactability of soils from the Argentinean pampas.Crossref | GoogleScholarGoogle Scholar |

Embrapa (1997) ‘Manual de métodos de análise de solo.’ 2 edn (Centro Nacional de Pesquisa Solos: Rio de Janeiro)

Embrapa (2006) ‘Sistema Brasileiro de Classificação de Solos.’ 2 edn (Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil)

FAO (2006) ‘World reference base for soil resources 2006: A framework for international classification, correlation and communication.’ (FAO: Rome)

Figueiredo LHA, Dias Junior MS, Ferreira MM (2000) Umidade crítica de compactação e densidade do solo máxima em resposta a sistemas de manejo num Latossolo Roxo. Revista Brasileira de Ciencia do Solo 24, 487–493.
Umidade crítica de compactação e densidade do solo máxima em resposta a sistemas de manejo num Latossolo Roxo.Crossref | GoogleScholarGoogle Scholar |

Figueiredo GC, Silva APd, Tormena CA, Giarola NFB, Moraes SO, Almeida BGd (2011) Desenvolvimento de um consolidômetro pneumático: modelagem da compactação, penetrometria e resistência tênsil de agregados de solo. Revista Brasileira de Ciencia do Solo 35, 389–402.
Desenvolvimento de um consolidômetro pneumático: modelagem da compactação, penetrometria e resistência tênsil de agregados de solo.Crossref | GoogleScholarGoogle Scholar |

Flint AL, Flint LE (2002) Particle density. In ‘Methods of soil analysis. Part 4. Physical methods’. (Eds JH Dane, GC Topp) pp. 229–240. (Soil Science Society of America: Madison, WI, USA)

Freddi S, Centurion JF, Beutler AN, Aratani RG, Leonel CL (2007) Compactação do solo no crescimento radicular e produtividade da cultura do milho. Revista Brasileira de Ciencia do Solo 31, 627–636.
Compactação do solo no crescimento radicular e produtividade da cultura do milho.Crossref | GoogleScholarGoogle Scholar |

Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London 115, 513–583.
On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies.Crossref | GoogleScholarGoogle Scholar |

Goosey HB, Hatfield PG, Lenssen AW, Blodgett SL, Kott RW (2005) The potential role of sheep in dryland grain production systems. Agriculture, Ecosystems & Environment 111, 349–353.
The potential role of sheep in dryland grain production systems.Crossref | GoogleScholarGoogle Scholar |

Gregory AS, Whalley WR, Watts CW, Bird NRA, Hallett PD, Whitmore AP (2006) Calculation of the compression index and precompression stress from soil compression test data. Soil & Tillage Research 89, 45–57.
Calculation of the compression index and precompression stress from soil compression test data.Crossref | GoogleScholarGoogle Scholar |

Grossman RB, Reinsch TG (2002) Bulk density and linear extensibility. In ‘Methods of soil analysis. Part 4. Physical methods’. (Eds JH Dane, CG Topp) pp. 201–228. (Soil Science Society of America: Madison, WI)

Håkansson I (1990) A method for characterizing the state of compactness of the plough layer. Soil & Tillage Research 16, 105–120.
A method for characterizing the state of compactness of the plough layer.Crossref | GoogleScholarGoogle Scholar |

Håkansson I, Lipiec J (2000) A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil & Tillage Research 53, 71–85.
A review of the usefulness of relative bulk density values in studies of soil structure and compaction.Crossref | GoogleScholarGoogle Scholar |

Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil & Tillage Research 82, 121–145.
Soil compaction in cropping systems: A review of the nature, causes and possible solutions.Crossref | GoogleScholarGoogle Scholar |

Hatfield PG, Goosey HB, Spezzano TM, Blodgett SL, Lenssen AW, Kott RW, Marlow CB (2007) Incorporating sheep into dryland grain production systems III. Impact on changes in soil bulk density and soil nutrient profiles. Small Ruminant Research 67, 222–231.
Incorporating sheep into dryland grain production systems III. Impact on changes in soil bulk density and soil nutrient profiles.Crossref | GoogleScholarGoogle Scholar |

Horn R, Fleige H (2003) A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil & Tillage Research 73, 89–99.
A method for assessing the impact of load on mechanical stability and on physical properties of soils.Crossref | GoogleScholarGoogle Scholar |

Imhoff S, Silva APd, Fallow D (2004) Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Science Society of America Journal 68, 17–24.
Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsFamsg%3D%3D&md5=68831fb9bd614b7f42d56444af98c35aCAS |

Jacomine PKT, Almeida JC, Medeiros LAR (1973) ‘Levantamento exploratório-reconhecimento de solos do Estado do Ceará.’ (Ministério da Agricultura/ SUDENE: Recife, PE)

Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal 61, 4–10.
Soil quality: A concept, definition, and framework for evaluation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlSitLc%3D&md5=97781dd5bf64ff4818331ec42a57bdf8CAS |

Keller T, Håkansson I (2010) Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 154, 398–406.
Estimation of reference bulk density from soil particle size distribution and soil organic matter content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wltb%2FN&md5=b53452d06a6afcac857fa2a026caccceCAS |

Keller T, Lamandé M, Schjønning P, Dexter AR (2011) Analysis of soil compression curves from uniaxial confined compression tests. Geoderma 163, 13–23.
Analysis of soil compression curves from uniaxial confined compression tests.Crossref | GoogleScholarGoogle Scholar |

Kondo M, Dias Junior MS (1999) Compressibilidade de três Latossolos em função da umidade de uso. Revista Brasileira de Ciencia do Solo 23, 211–218.
Compressibilidade de três Latossolos em função da umidade de uso.Crossref | GoogleScholarGoogle Scholar |

Lal R (1993) Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil and Tillage Research 27, 1–8.
Tillage effects on soil degradation, soil resilience, soil quality, and sustainability.Crossref | GoogleScholarGoogle Scholar |

Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22.
Soil carbon sequestration to mitigate climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslSmsLY%3D&md5=356f2cc64a47d40a835666ff7faa58aaCAS |

Lal R, Shukla MK (2004) Basic definitions and concepts: soil components and phases In ‘Principles of soil physics’. 1st edn. (Eds R Lal, MK Shukla) pp. 13–28. (Marcel Dekker Inc.: New York)

Lima CLR, Silva AP, Imhoff S, Leão TP (2004a) Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado. Revista Brasileira de Ciencia do Solo 28, 945–951.
Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado.Crossref | GoogleScholarGoogle Scholar |

Lima CLR, Silva APd, Imhoff S, Lima HV, Leão TP (2004b) Heterogeneidade da compactação de um latossolo vermelho-amarelo sob pomar de laranja. Revista Brasileira de Ciencia do Solo 28, 409–414.
Heterogeneidade da compactação de um latossolo vermelho-amarelo sob pomar de laranja.Crossref | GoogleScholarGoogle Scholar |

Lipiec J, Hatano R (2003) Quantification of compaction effects on soil physical properties and crop growth. Geoderma 116, 107–136.
Quantification of compaction effects on soil physical properties and crop growth.Crossref | GoogleScholarGoogle Scholar |

Maia SMF, Xavier FAdS, Oliveira TSd, Mendonça EdS, Araújo Filho JAd (2006) Impactos de sistemas agroflorestais e convencional sobre a qualidade do solo no semi-árido cearense. Revista Árvore 30, 837–848.
Impactos de sistemas agroflorestais e convencional sobre a qualidade do solo no semi-árido cearense.Crossref | GoogleScholarGoogle Scholar |

Maia SMF, Xavier FAdS, Oliveira TSd, Mendonça EdS, Araújo Filho JAd (2008) Frações de nitrogênio em Luvissolo sob sistemas agroflorestais e convencional no semi-árido cearense. Revista Brasileira de Ciencia do Solo 32, 381–392.
Frações de nitrogênio em Luvissolo sob sistemas agroflorestais e convencional no semi-árido cearense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFOjurg%3D&md5=c047ae8282444a3ed7f85739b922c294CAS |

McBride RA, Joosse PJ (1996) Overconsolidation in agricultural soils: II. Pedotransfer functions for estimating preconsolidation stress. Soil Science Society of America Journal 60, 373–380.
Overconsolidation in agricultural soils: II. Pedotransfer functions for estimating preconsolidation stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xitleqsr0%3D&md5=4d4008856905ef2944f746ff7c30b6bcCAS |

Medeiros JC, Figueiredo GC, Mafra ÁL, Rosa JD, Yoon SW (2013) Deep subsoiling of a subsurface-compacted typical hapludult under citrus orchard. Revista Brasileira de Ciencia do Solo 37, 911–919.
Deep subsoiling of a subsurface-compacted typical hapludult under citrus orchard.Crossref | GoogleScholarGoogle Scholar |

Mome Filho EA, Silva APd, Figueiredo GC, Gimenes FHS, Vitti AC (2014) Compared performance of penetrometers and effect of soil water content on penetration resistance measurements. Revista Brasileira de Ciencia do Solo 38, 744–754.
Compared performance of penetrometers and effect of soil water content on penetration resistance measurements.Crossref | GoogleScholarGoogle Scholar |

Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. Forest Ecology and Management 261, 1654–1663.
Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands.Crossref | GoogleScholarGoogle Scholar |

Nhantumbo ABJC, Cambule AH (2006) Bulk density by Proctor test as a function of texture for agricultural soils in Maputo province of Mozambique. Soil & Tillage Research 87, 231–239.
Bulk density by Proctor test as a function of texture for agricultural soils in Maputo province of Mozambique.Crossref | GoogleScholarGoogle Scholar |

Nogueira RS, Oliveira TS, Mendonça ES, Araújo , Filho JA (2008) Formas de fósforo em Luvissolo Crómico Órtico sob sistemas agroflorestais no município de Sobral-CE. Revista Ciência Agronômica 39, 494–502.

Pacheco EP, Cantalice JRB (2011) Compressibilidade, resistência a penetração e intervalo hídrico ótimo de um Argissolo Amarelo cultivado com cana-de-açúcar nos Tabuleiros Costeiros de Alagoas. Revista Brasileira de Ciencia do Solo 35, 403–415.
Compressibilidade, resistência a penetração e intervalo hídrico ótimo de um Argissolo Amarelo cultivado com cana-de-açúcar nos Tabuleiros Costeiros de Alagoas.Crossref | GoogleScholarGoogle Scholar |

Payton ME, Miller AE, Raun WR (2000) Testing statistical hypotheses using standard error bars and confidence intervals. Communications in Soil Science and Plant Analysis 31, 547–551.
Testing statistical hypotheses using standard error bars and confidence intervals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFemsLk%3D&md5=7c1ebd5d4060770a3a503d8e8589b790CAS |

Pengthamkeerati P, Motavalli PP, Kremer RJ (2011) Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil. Applied Soil Ecology 48, 71–80.
Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil.Crossref | GoogleScholarGoogle Scholar |

Proffitt A, Bendotti S, Howell M, Eastham J (1993) The effect of sheep trampling and grazing on soil physical properties and pasture growth for a red-brown earth. Australian Journal of Agricultural Research 44, 317–331.
The effect of sheep trampling and grazing on soil physical properties and pasture growth for a red-brown earth.Crossref | GoogleScholarGoogle Scholar |

Rangel Vasconcelos LGT, Kato OR, Vasconcelos SS (2012) Matéria orgânica leve do solo em sistema agroflorestal de corte e trituração sob manejo de capoeira. Pesquisa Agropecuaria Brasileira 47, 1142–1149.

Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Håkansson I (2009) Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil & Tillage Research 102, 242–254.
Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils.Crossref | GoogleScholarGoogle Scholar |

SAS Institute (2002) ‘SAS/STAT® 9.0 user’s guide.’ (SAS Institute Inc.: Cary, NC, USA)

Schroth G (1998) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agroforestry Systems 43, 5–34.
A review of belowground interactions in agroforestry, focussing on mechanisms and management options.Crossref | GoogleScholarGoogle Scholar |

Silva VR, Reinert DJ, Reichert JM (2000) Suscetibilidade à compactação de um Latossolo Vermelho-Escuro e de um Podzólico Vermelho-Amarelo. Revista Brasileira de Ciencia do Solo 24, 239–249.
Suscetibilidade à compactação de um Latossolo Vermelho-Escuro e de um Podzólico Vermelho-Amarelo.Crossref | GoogleScholarGoogle Scholar |

Silva VR, Reinert DJ, Reichert JM (2002a) Fatores controladores da compressibilidade de um Argissolo Vermelho Amarelo distrófico arênico e de um Latossolo Vermelho distrófico típico. II—grau de saturação em água. Revista Brasileira de Ciencia do Solo 26, 9–16.
Fatores controladores da compressibilidade de um Argissolo Vermelho Amarelo distrófico arênico e de um Latossolo Vermelho distrófico típico. II—grau de saturação em água.Crossref | GoogleScholarGoogle Scholar |

Silva VR, Reinert DJ, Reichert JM, Soares JM (2002b) Fatores controladores da compressibilidade de um Argissolo Vermelho amarelo distrófico arênico e de um Latossolo vermelho distrófico típico. I—estado inicial de compactação. Revista Brasileira de Ciencia do Solo 26, 1–8.
Fatores controladores da compressibilidade de um Argissolo Vermelho amarelo distrófico arênico e de um Latossolo vermelho distrófico típico. I—estado inicial de compactação.Crossref | GoogleScholarGoogle Scholar |

Silva GL, Lima HV, Campanha MM, Gilkes RJ, Oliveira TS (2011) Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region. Geoderma 167–168, 61–70.
Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region.Crossref | GoogleScholarGoogle Scholar |

Soane BD (1990) The role of organic matter in soil compactibility: A review of some practical aspects. Soil & Tillage Research 16, 179–201.
The role of organic matter in soil compactibility: A review of some practical aspects.Crossref | GoogleScholarGoogle Scholar |

Soane BD, van Ouwerkerk C (1995) Implications of soil compaction in crop production for the quality of the environment. Soil & Tillage Research 35, 5–22.
Implications of soil compaction in crop production for the quality of the environment.Crossref | GoogleScholarGoogle Scholar |

Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL (2001) A procedure for isolating soil organic matter fractions suitable for modeling. Soil Science Society of America Journal 65, 1121–1128.
A procedure for isolating soil organic matter fractions suitable for modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFeqtbo%3D&md5=290908d8a91b20dadebd40c3b439a862CAS |

Spoor G, Tijink FGJ, Weisskopf P (2003) Subsoil compaction: risk, avoidance, identification and alleviation. Soil & Tillage Research 73, 175–182.
Subsoil compaction: risk, avoidance, identification and alleviation.Crossref | GoogleScholarGoogle Scholar |

Suzuki LEAS, Reichert JM, Reinert DJ, Lima CLRd (2007) Grau de compactação, propriedades físicas e rendimento de culturas em Latossolo e Argissolo. Pesquisa Agropecuaria Brasileira 42, 1159–1167.
Grau de compactação, propriedades físicas e rendimento de culturas em Latossolo e Argissolo.Crossref | GoogleScholarGoogle Scholar |

Suzuki LEAS, Reinert DJ, Reichert JM, Lima CLRd (2008) Estimativa da susceptibilidade à compactação e do suporte de carga do solo com base em propriedades físicas de solos do Rio Grande do Sul. Revista Brasileira de Ciencia do Solo 32, 963–973.
Estimativa da susceptibilidade à compactação e do suporte de carga do solo com base em propriedades físicas de solos do Rio Grande do Sul.Crossref | GoogleScholarGoogle Scholar |

Vasconcelos RFBd, Cantalice JRB, Moura GBdA, Rolim MM, Montenegro CEdV (2012) Compressibilidade de um Latossolo Amarelo distrocoeso não saturado sob diferentes sistemas de manejo da cana-de-açúcar. Revista Brasileira de Ciencia do Solo 36, 525–536.
Compressibilidade de um Latossolo Amarelo distrocoeso não saturado sob diferentes sistemas de manejo da cana-de-açúcar.Crossref | GoogleScholarGoogle Scholar |

Veiga Md, Horn R, Reinert DJ, Reichert JM (2007) Soil compressibility and penetrability of an Oxisol from southern Brazil, as affected by long-term tillage systems. Soil & Tillage Research 92, 104–113.

Willatt S, Pullar D (1984) Changes in soil physical properties under grazed pastures. Soil Research 22, 343–348.
Changes in soil physical properties under grazed pastures.Crossref | GoogleScholarGoogle Scholar |

Xavier FAdS, Maia SMF, Oliveira TSd, Mendonça EdS (2006) Biomassa microbiana e matéria orgânica leve em solos sob sistemas agrícolas orgânico e convencional na Chapada da Ibiapaba – CE. Revista Brasileira de Ciencia do Solo 30, 247–258.
Biomassa microbiana e matéria orgânica leve em solos sob sistemas agrícolas orgânico e convencional na Chapada da Ibiapaba – CE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFeltrg%3D&md5=4df245b06cd75e2ea306f47116b3586eCAS |

Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil 1. Communications in Soil Science and Plant Analysis 19, 1467–1476.
A rapid and precise method for routine determination of organic carbon in soil 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1Oru7w%3D&md5=4c9ff0814efaedd8419d012a9c72f177CAS |

Yu K, D’Odorico P (2014) Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots. Advances in Water Resources 66, 70–80.
Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots.Crossref | GoogleScholarGoogle Scholar |

Zhang H, Hartge KH, Ringe H (1997) Effectiveness of organic matter incorporation in reducing soil compactibility. Soil Science Society of America Journal 61, 239–245.
Effectiveness of organic matter incorporation in reducing soil compactibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlSgtrk%3D&md5=9ab8f98b4282d51de48bfa059a2878b2CAS |